

---

## 18.354 – Nonlinear Dynamics II: Continuum systems

### Problem Set 4: SURFACE TENSION & ELASTICITY

Due: Monday, April 7 (by 3pm in class)

---

#### Problem 1: CAPILLARY RISE

Consider an infinite pool of liquid, with surface tension  $\gamma$  at the air interface. You know from common experience that if you put a vertical wall into the pool, the liquid will climb up the wall and forms a meniscus. The goal of this problem is to calculate how much it moves up the wall. Suppose the liquid has an angle of contact  $\theta_c$  with the solid wall. Use the calculus of variations to determine  $h(x)$ , the shape of the interface that minimises the energy of the system (*hint: you need to consider the contribution to the energy from both surface tension and the gravitational potential*).

This problem can be solved both analytically and numerically, and you should try both. Write your total energy as an integral in  $x$ . Can you use the special form of Euler-Lagrange? You should obtain a first order ODE for  $h(x)$ . To find the analytic solution, you should solve this by separation of variables (you may need to look up the integral for  $h$ ). Your boundary conditions are given to you physically as (i) the contact angle on the solid wall ( $h'(0) = \cot \theta_c$ ), and (ii) the height goes to the resting height of the liquid far from the wall. To solve the problem numerically, you can use the ODE to relate  $h'(0)$  to  $h(0)$ . Pick a value of  $\theta_c$ , and, then use an ODE solver in MATLAB (either `ode45` or `ode15s`) to find  $h(x)$ . Is the condition on  $h(x)$  far away from the wall satisfied? You may also want to clean up the problem by scaling  $h$  and  $x$  by the capillary length  $L_c = \sqrt{\gamma/\rho g}$ . Compare your numerical solution with the analytical one.

#### Problem 2: LINEAR ELASTICITY AND EINSTEIN NOTATION

Using Einstein notation, the most general expression for the free energy of a deformed isotropic body is

$$E = \frac{1}{2} \lambda e_{ii}^2 + \mu e_{ik}^2,$$

where  $\lambda$  and  $\mu$  are called Lamè coefficients. It is convenient to replace this by another formula, decomposing the energy into a pure shear and a pure compression. Then  $E$  becomes

$$E = \mu(e_{ik} - \frac{1}{3}\delta_{ik}e_{ll})^2 + \frac{1}{2}Ke_{ll}^2.$$

This is the expression we used in class, where  $K$  and  $\mu$  are respectively the modulus of compression and rigidity. Rewrite the above expressions, including the summation signs where appropriate, writing your steps explicitly and clearly.

(a) Find an expression for  $K$  in terms of  $\lambda$  and  $\mu$ .

(b) The stress tensor  $\sigma_{ik}$  is related to the free energy via  $\sigma_{ik} = \partial E / \partial e_{ik}$ . Show that

$$\sigma_{ik} = K e_{ll} \delta_{ik} + 2\mu (e_{ik} - \frac{1}{3} \delta_{ik} e_{ll}).$$

(c) Show that the stress tensor,  $e_{ij}$ , can be determined by inverting the expression for the stress tension,  $\sigma_{ik}$ , that you found above, such that,

$$e_{ij} = \frac{\sigma_{ll}}{9K} \delta_{ij} + \frac{\sigma_{ij} - \frac{1}{3} \sigma_{ll} \delta_{ij}}{2\mu}. \quad (1)$$

Having done this, now rewrite your steps for (a) and (b) in concise form, using Einstein notation.

*Hint - For (b) you will find the following relations helpful:*

$$\begin{aligned} \frac{\partial e_{ik}}{\partial e_{mn}} &= \delta_{im} \delta_{kn} \\ \frac{\partial(e_{ll})}{\partial e_{mn}} &= \frac{\partial(e_{11} + e_{22} + e_{33})}{\partial e_{mn}} = \delta_{mn} \\ \delta_{ik}^2 &= \sum_{i,k=1}^3 \delta_{ik} \delta_{ik} = \delta_{11} \delta_{11} + \delta_{22} \delta_{22} + \delta_{33} \delta_{33} = 3 \end{aligned}$$