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1 Introduction

Why do we study applied mathematics? Aside from the intellectual challenge, it is reason-
able to argue that we do so to obtain an understanding of physical phenomena, and to be
able to make predictions about them. Possibly the greatest example of this, and the origin
of much of the mathematics we do, came from Newton’s desire to understand the motion
of the planets, which were known to obey Kepler’s laws.

1.1 Kepler’s laws of planetary motion

In the early seventeenth century (1609-1619) Kepler proposed three laws of planetary motion

(i) The orbits of the planets are ellipses, with the Sun’s centre of mass at one focus of
the ellipse.

(ii) The line joining a planet and the Sun describes equal areas in equal intervals of time.

(iii) The squares of the periods of the planets are proportional to the cubes of their semi-
major axes.

These laws were based on detailed observations made by Tycho Brahe, and put to rest
any notion that planets move in perfectly circular orbits. However, it wasn’t until Newton
proposed his law of gravitation in 1687 that the origins of this motion were understood.
Newton proposed that

“Every object in the Universe attracts every other object with a force directed along a line
of centres for the two objects that is proportional to the product of their masses and

inversely proportional to the square of the separation of the two objects.”

Based on this one statement, it is possible to derive Kepler’s laws.

1.1.1 Kepler’s 2

nd
law

Keplers second law is the simplest to derive, and is a statement that the angular momentum
of a particle moving under a central force, such as gravity, is constant. By definition, the
angular momentum L of a particle with mass m and velocity u is

L = r⇥m
dr

dt
, (1)

where r is the vector position of the particle. The rate of change of angular momentum is
given by

dL

dt
= r⇥ f = r⇥ f(r)r̂ = 0, (2)

where f(r)r̂ is the central force, depending only on the distance r = |r| and pointing in the
direction r̂ = r/r. It can therefore be seen that the angular momentum of a particle moving
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2.1 Derivation of the di↵usion equation using particle fluxes

Consider two neighbouring points on a line. At time t there are N(x, t) particles at x and
N(x+ �, t) particles at position x+ �. At time t+ ⌧ half the particles at x will have stepped
across the dashed line from left to right and half of the particles at x+ � will have stepped
across the dashed line from right to left. The net number of particles crossing to the right
is therefore

�1

2
[N(x+ �, t)�N(x, t)] . (8)

To obtain the net flux, we divide by the area normal to the x-axis, A, and by the time
interval ⌧ ,

J
x

= � [N(x+ �, t)�N(x, t)]

2A⌧
. (9)

Multiplying by �2/�2 gives

J
x

= � �2

2⌧

1

�


N(x+ �, t)�N(x, t)

A�

�
, (10)

which can be rewritten

J
x

= �D
n(x+ �, t)� n(x, t)

�
, (11)

where D = �2/2⌧ is the di↵usion coe�cient and

n(x, t) =
N(x, t)

A�

is the particle density (i.e.the number of particles per unit volume at position x at time t).
If � is assumed to be very small, then in the limit � ! 0, the flux becomes

J
x

= �D
@n

@x
, (12)

where we have ignored higher order derivatives in making the approximation.
Now consider a single box with boundaries at x��/2 and x+�/2. In a single time step,

J
x

(x � �/2, t)A⌧ particles will enter from the left and J
x

(x + �/2, t)A⌧ particles will leave
through the right boundary. The number of particles in the box increases as follows,

N(x, t+ ⌧)�N(x, t) = [J
x

(x� �/2, t)� J
x

(x+ �/2, t)]A⌧.

By dividing both sides by A�⌧ the number of particles per unit volume in the box n(x, t)
is seen to increase at the rate1

n(x, t+ ⌧)� n(x, t)

⌧
= � [J

x

(x+ �/2, t)� J
x

(x� �/2, t)]

�
. (13)

In the limit ⌧ ! 0 and � ! 0, this becomes

@n

@t
= �@J

x

@x
= D

@2n

@x2
, (14)

1
For strictly one-dimensional systems, the boundary area is just a point and, hence, A = 1 in this case.
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Hydrodynamics

and temperature, and that in general values of these quantities are continuous functions of
position and time. There is ample observational evidence that common real fluids move as if
they were continuous, under normal conditions and indeed for considerable departures from
normal conditions. However, some of the properties of the equivalent continuous media need
to be determined empirically, and cannot be derived directly from microscopic principles.

6.1.1 The continuity equation

Let’s suppose the fluid density is described by a function ⇢(r, t). The total mass enclosed
in a fixed volume V is Z

V
⇢dV. (1)

The mass flux leaving this volume through the bounding surface S is
Z

S
⇢u · ndS, (2)

where u(x, t) is the velocity of the fluid and n is the outward normal. Hence we have

Z

V

@⇢

@t

dV = �
Z

S
⇢u · ndS = �

Z

V
r · (⇢u)dV. (3)

This must hold for any arbitrary fluid element dV , thus

@⇢

@t

+r · (⇢u) = 0. (4)

This is called the continuity equation.
For fluids like water, the density does not change very much and we will often be tempted

to neglect the density variations. If we make this approximation the continuity equation
reduces to the incompressibility condition

r · u = 0. (5)

Like all approximations, this one is sometimes very good and sometimes not so good. We
will have to figure out where it fails.

6.1.2 Momentum equations

So far we have more unknowns than equations (three velocity components but only one
equation). We now consider the conservation of linear momentum and, adopting an alter-
native viewpoint to that used in deriving the continuity equation, consider Newton’s laws
for a particular moving element of fluid:

d

dt

Z

V (t)
⇢udV = �

Z

S(t)
pndS +

Z

V (t)
FdV, (6)

where V (t) is the volume of the element enclosed by the surface S(t), F are body forces,
such as gravity ⇢g, and p is a pressure force. The pressure force is a normal force per unit
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area (usually compressive) exerted across the surface of a fluid element, and is related to
both intermolecular forces and momentum transfer across an interface. For any volume,
the pressure force is

�
Z

pndS = �
Z

rpdV. (7)

Both V (t) and S(t) are being deformed by the motion of the fluid, so if we want to take the
d/dt inside the integral sign we must take account of this. The Reynolds transport theorem
does so, and it can be shown that for a deforming, incompressible fluid element

d

dt

Z

V (t)
⇢udV =

Z

V (t)
⇢

Du

Dt

dV (8)

Here

D

Dt

=
@

@t

+ (u ·r) (9)

is called the convective derivative, and we shall discuss it’s significance in a moment. Hence,
assuming that F is solely given by gravity,

Z

V (t)
⇢

Du

Dt

dV =

Z

V (t)
(�rp+ ⇢g)dV (10)

Since this must hold for any arbitrary fluid element we arrive at

Du

Dt

=
�rp

⇢

+ g. (11)

This, combined with the the continuity equation (4), constitutes the Euler equations. Things
can be tidied up a little if we realise that the gravitational force, being conservative, can be
written as the gradient of a scalar potential r . It is therefore usual to redefine pressure as
p+  ! p. This implies that gravity simply modifies the pressure distribution in the fluid
and does nothing to change the velocity. However, we cannot do this if ⇢ is not constant or
if we have a free surface (as we shall see later with water waves).

Assuming the density is constant means we now have four equations in four unknowns:
three components of u and p. Note that if we do not demand constant density then the equa-
tions (continuity+momentum) only close with another relation, an equation of state p(⇢).

6.2 From Newton’s laws to hydrodynamic equations

To complement the purely macroscopic considerations from the previous section, we will
now discuss how one can obtain hydrodynamic equations from the microscopic dynamics.
To this end, we consider a many-particle system governed by Newton’s equations

dxi

dt

= vi , m

dv

dt

= F i, (12)
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Calculus of variations
What is the di↵erential equation satisfied by Y (x)? To answer this question, we compute
the functional derivative

�I[Y ]

�Y

= lim
✏!0

1

✏

{I[f(x) + ✏�(x� y)]� I[f(x)]}

=

Z
x2

x1


@f

@Y

�(x� y) +
@f

@Y

0 �
0(x� y)

�
dx

=

Z
x2

x1


@f

@Y

� d

dx

@f

@Y

0

�
�(x� y)dx. (17)

Equating this to zero, yields the Euler-Lagrange equations

0 =
@f

@Y

� d

dx

@f

@Y

0 (18)

It should be noted that the condition �I/�Y = 0 alone is not a su�cient condition for
a minimum. In fact, the relation might even indicate a maximum. It is often possible,
however, to convince oneself that no maximum exists for the integral (e.g., the distance
along a smooth path can be made as long as we like), and that our solution is a minimum.
To be rigorous, however, one should also consider the possibility that the minimum is merely
a local minimum, or perhaps the relation �I/�Y = 0 indicates a point of inflexion.

It is easy to check that Eq. (18) yields the Newton equations

mẍ = �V

0(x), (19)

when applied to the action functional (9). Similarly, the Euler-Lagrange equations for the
shortest-path integral (2) just give the ODE (6).

13.4 Brachistrochrone

In June 1696, Johann Bernoulli set the following problem: Given two points A and B in a
vertical plane, find the path from A to B that takes the shortest time for a particle moving
under gravity without friction. This proposal marked the real beginning of general interest
in the calculus of variations. (The term ‘brachistochrone’ derives from the Greek brachistos

meaning shortest and chronos meaning time.)
If the particle starts at height h0, energy conservation requires mv

2
/2 = mg(h0�h(x)),

where v is particle speed, h0 is the original height of the particle and h(x) is the height of
the particle as position x. Thus

v =
p

2g(h0 � h(x)). (20)

By definition v = ds/dt so that the time taken to go from A to B is
Z

B

A

dt =

Z
B

A

dsp
2g[h0 � h(x)]

. (21)

We know that ds =
p
1 + h

02, so that the time taken is

T [h] =

Z
B

A

dx

s
1 + h

02

2g(h0 � h)
. (22)
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mẍ = �V

0(x), (19)

when applied to the action functional (9). Similarly, the Euler-Lagrange equations for the
shortest-path integral (2) just give the ODE (6).

13.4 Brachistrochrone

In June 1696, Johann Bernoulli set the following problem: Given two points A and B in a
vertical plane, find the path from A to B that takes the shortest time for a particle moving
under gravity without friction. This proposal marked the real beginning of general interest
in the calculus of variations. (The term ‘brachistochrone’ derives from the Greek brachistos

meaning shortest and chronos meaning time.)
If the particle starts at height h0, energy conservation requires mv

2
/2 = mg(h0�h(x)),

where v is particle speed, h0 is the original height of the particle and h(x) is the height of
the particle as position x. Thus

v =
p

2g(h0 � h(x)). (20)

By definition v = ds/dt so that the time taken to go from A to B is
Z

B

A

dt =

Z
B

A

dsp
2g[h0 � h(x)]

. (21)

We know that ds =
p
1 + h

02, so that the time taken is

T [h] =

Z
B

A

dx

s
1 + h

02

2g(h0 � h)
. (22)

58



Surface tension



Singular perturbations
18.3 An elementary di↵erential equation (Acheson, pp. 269-271)

Let’s consider the di↵erential equation

✏
d2u

dx2
+

du

dx
= 1. (11)

If ✏ is very small we might argue that we can neglect this term, the solution therefore being

u = x+ C. (12)

Alternatively, if we consider the full problem the solution is

u = A+ x+Be�x/✏. (13)

Imposing the boundary conditions u(0) = 0, u(1) = 2, for the full problem we determine A
and B, and find that

u = x+
1� e�x/✏

1� e�1/✏
(14)

is the exact solution. We cannot apply both these boundary conditions to our approximate
solution (as it is a first order equation), so we choose the ‘outer’ condition u(1) = 2. The
approximate solution satisfying the outer condition is therefore

u = x+ 1. (15)

In the outer region the approximate solution and the true solution are very close. However,
in a region close to x = 0 they di↵er greatly. We call this the boundary layer. It arises
because the small parameter ✏ multiplies the highest derivative in the equation, and by
ignoring this term we lower the order of the system and are unable to satisfy both boundary
conditions.

We need to find an approximate ‘inner’ solution that matches the boundary condition
at x = 0. To do so, we change the independent variable to

X =
x

✏
. (16)

This enables us to zoom in on the boundary layer. With this scaling the original equation
becomes

1

✏

d2u

dX2
+

1

✏

du

dX
= 1, (17)

so that to a first approximation the ‘inner’ solution satisfies

d2u

dX2
+

du

dX
= 0. (18)

Imposing the boundary condition at X = 0 gives

u = A(1� e�X) = A(1� e�
x

✏ ). (19)

Finally, we require that as X ! 1 the inner solution matches the outer solution in the
limit x ! 0, so that A = 1.
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Conformal mappings

21.2 Conformal mapping

We can now use the power of complex analysis to think about two dimensional potential flow
problems. Since � and  obey the Cauchy-Riemann equations, this implies that w = �+ i 
is an analytic function of the complex variable z = x+ iy. We call w the complex potential.
Another important property of 2D incompressible flow is that both � and  satisfy Laplace’s
equation. For example, using the Cauchy-Riemann equations we see that

@ 

@x2
+
@ 

@y2
= � @2 

@x@y
+

@2 

@y@x
= 0. (6)

The same proof can be used for �. We can therefore consider any analytic function (e.g.,
sin z,z4,...), calculate the real and imaginary parts and both of them satisfy Laplace’s equa-
tion.

The velocity components u and v are directly related to dw/dz, which is conveniently
calculated as follows:

dw

dz
=
@�

@x
+ i

@ 

@x
= u� iv. (7)

As a simple example consider uniform flow at an angle ↵ to the x-axis. The corresponding
complex potential is w = u0ze

�i↵. In this case dw/dz = u0e
�i↵. Using the above relation,

this tells us that u = u0 cos↵ and v = u0 sin↵.
We can also determine the complex potential for flow past a cylinder since we know that

� = u0

✓
r +

R2

r

◆
cos ✓, (8)

and this is just the real part of the complex potential

w = u0

✓
z +

R2

z

◆
. (9)

Check this by substituting in z = rei✓. What is the corresponding stream function? Also
w(z) = �i ln z is the complex potential for a point vortex since

Re (w(z)) = Re
⇣
�i ln(rei✓)

⌘
= ✓, (10)

and we know that � = ✓ is the real potential for a point vortex. Thus

w(z) = u0

✓
z +

R2

z

◆
� i�

2⇡
ln z (11)

is the complex potential for flow past a cylinder with circulation �.
So let’s assume that the only problem we know how to solve is flow past a cylinder, when

really we want to know how to solve for flow past an aerofoil. The idea is to now consider
two complex planes (x, y) and (X,Y ). In the first plane we have the complex variable
z = x + iy and in the latter we have Z = X + iY . If we construct a mapping Z = F (z)
which is analytic, with an inverse z = F�1(Z), then W (Z) = w(F�1(Z)) is also analytic,
and may be considered a complex potential in the new co-ordinate system. Because W (Z)
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and w(z) take the same value at corresponding points of the two planes it follows that  
and  are the same at corresponding points. Thus streamlines are mapped into streamlines.
In particular a solid boundary in the z-plane, which is necessarily a streamline, gets mapped
into a streamline in the Z-plane, which could accordingly be viewed as a rigid boundary.
Thus all we have done is distort the streamlines and the boundary leaving us with the key
question: Given flow past a circular cylinder in the z-plane can we choose a mapping so
as to obtain in the Z-plane uniform flow past a more wing-like shape? (Note that we have
brushed passed some technical details here, such as the requirement that dF/dz 6= 0 at any
point, as this would cause a blow-up of the velocity).

21.3 Simple conformal maps

The simplest map is
Z = F (z) = z + b, (12)

which corresponds to a translation. Then there is

Z = F (z) = zei↵, (13)

which corresponds to a rotation through angle ↵. In this case, the complex potential for
uniform flow past a cylinder making angle ↵ with the stream is

W (Z) = u0

✓
Ze�i↵ +

R2

Z
ei↵
◆
� i�

2⇡
lnZ. (14)

Note, that this expression could also include the term ln ei↵ = i↵ which I have neglected.
This is just a constant however and doesn’t change the velocity.

Finally there is the non-trivial Joukowski transformation,

Z = F (z) = z +
c2

z
. (15)

What does this do to the circle? Well, z = aei✓ becomes

Z = aei✓ +
c2

a
e�i✓ = (a+

c2

a
) cos ✓ + i(a� c2

a
) sin ✓. (16)

Defining X = Re(Z), Y = Im(z), it is easily shown that

 
X

a+ c

2

a

!2

+

 
Y

a� c

2

a

!2

= 1, (17)

which is the equation of an ellipse, provided c < a.
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Rotating flows
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23 Rotating flows (Acheson, pp. 278-287; Taylor’s paper)

Before leaving the topic of boundary layers, we will discuss one more example, of substantial
geophysical importance. It also gives an example of laminar flow where the boundary layer
actually completely controls the dynamics. In the process of deriving this result we will
also learn about a rather remarkable phenomenon in rotating fluid dynamics.

23.1 The Taylor-Proudman theorem

Consider a fluid rotating with angular velocity ⌦. The equation of motion in the frame of
reference rotating with the fluid is

@u

@t

+ u ·ru+ ⌦⇥ (⌦⇥ r) = �1

⇢

rp⌦ + ⌫r2u� 2⌦⇥ u, (1a)

r · u = 0. (1b)

There are two additional terms: the first ⌦⇥ (⌦⇥ r) is the centrifugal acceleration, which
we have discussed before. This can be thought of as an augmentation to the pressure
distribution, using the identity

⌦⇥ (⌦⇥ r) = �1

2
r(⌦⇥ r)2. (2)

Henceforth, we will simply absorb this into the pressure by writing

p = p⌦ � ⇢

2
r(⌦⇥ r)2. (3)

For the rotating earth, the e↵ect of this force is to simply distort the shape of the object
from a sphere into an oblate ellipsoid. The second term is the Coriolis acceleration which
is velocity dependent. Hopefully you have heard about it in classical mechanics. In the
exercises you are asked to show that it arises naturally when you start from the Navier-
Stokes equations and transform into a rotating reference frame.

We are going to be interested in flows which are much weaker than the rotation of the
system. If U is a characteristic velocity scale and L is a characteristic length scale, then the
advective term is of order U2

/L whereas the coriolis force is of order ⌦U . We will assume
that ⌦U � U

2
/L so that the equation of motion is e↵ectively

@u

@t

= �1

⇢

rp+ ⌫r2u� 2⌦⇥ u, (4a)

r · u = 0. (4b)
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Topological defects
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d
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