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DNA packaging in humans

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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DNA packaging in humans

of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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Cyto-skeleton

eukaryotic cells (source: wiki)

Nucleus	
!

Actin	
!

Microtubuli

mechanical properties,	
network topology, ...
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Cyto-skeleton

Microtubuli network in Drosophila embryo
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FIG. 1. PAR-1 polarity organizes the local net direction of the MT cytoskeleton. A) Confocal crosssection through an oocyte
expressing PAR-1 protein trap GFP at late stage 9. Scale bar is 20µm. B) PAR-1 fluorescence profile around posterior-lateral
cortex (green) and moving average (blue). Domain width (dashed line with arrows) is measured as the width at 45% of peak
height above base line (dashed line). C) PAR-1 domain width as a fraction of the length of posterior-lateral cortex in N =?
oocytes as a function of the follicle cells surrounding the oocytes. Follicle cell number increases throughout stage 9 and can be
used as cell-intrinsic measure of time (see text). D) Three-dimensional representation of oocyte geometry. Red line indicates
crosssection shown in panels E-G. E) Schematic two-dimensional crosssection as indicated in E. MTs (brown) are assumed
to be straight rods of width � with typical length LMT = 0.5 emanating from all over the cortex except the PAR-1 domain
(green) at all angles (i). At each point inside the oocyte the density of overlapping MTs and net direction can be calculated
(ii). F) Crosssection through the MT density calculated by summing up contributions from the entire cortex at each point
within the oocyte. G) Vector field crosssection throught the MT director field calculated by summing up MT directions from
the entire cortex at every point inside the oocyte geometry and dividing by the density shown in panel (F). Arrows indicate
net direction of MT plus ends. oskar mRNA transported by plus-end directed motor kinesin would follow arrows, while bicoid
mRNA transported by minus-end directed dynein would move opposite to arrows. Arrow magnitude denotes the strength of
the directionality. H) Staining of MTs in late S9 oocyte. I) MT nucleation density at the cortex as a function of coordinate x
along the AP axis for a wild-type (top, blue) and PAR-1 mutant (top, red) oocyte. Bottom shows length distribution of MTs.
J)-K) Same as panels (F)-(G) but for the PAR-1 mutant. See supplementary for details.

quantitative agreement with the directionality measure-
ment of oskar mRNA movement and MT direction [7, 8].
Yet, this analysis reveals that there is a net organiza-
tion in dorso-ventral direction as well which cancels each
other and leads to a vanishing overall net direction in
agreement with experiments that pooled directional data
globally. Thus, the MT cytoskeleton in wild-type oocytes

may be more ordered than previously thought.

Next we focussed on mutants that lack a PAR-1 do-
main. In hypomorphs such as PAR-16323/PAR-1W3 os-
kar mRNA mislocalizes to a cloud or dot in the center
of the oocyte [13, 16]. We therefore ask what the MT
cytoskeletal architecture results from a lack of PAR-1 do-
main. Allowing MTs to emanate from all around the cor-

photo:	
Philipp Khuc- Trong
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Drosophila oocyte

Goldstein lab, PNAS 2012
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Actin in flow

were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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The concentration of F-actin suitable for the experiments
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Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
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which peaks at the center and vanishes at the filament
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otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
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The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P
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FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
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eigenfunction Wð1Þ. Subsequent instabilities of higher
modes occur at !#

2 ¼ %1:9876 and !#
3 ¼ %4:955. At the

large value ! ¼ %47 in Fig. 3(c), the shape is a superpo-
sition of modes 3 and 4.

We have quantified the fluctuations, dynamics, and
buckling of single actin filaments under flow-induced ten-
sion and thereby established that strain rates _! in the range
0:1–1 s%1 are sufficient to induce buckling of filaments
with L& ‘p. Intriguingly, these are of the same order as
found in cytoplasmic streaming in large eukaryotic cells,
particularly those of plants [6,27]. This raises the possibil-
ity that significant filament rearrangements can occur
through the action of streaming. A quantitative treatment
of the finite-temperature rounding of the stretch-coil tran-
sition, along the lines of approaches to the Euler buckling
problem [17] or more general stochastic supercritical bi-
furcations [28], and a low-dimensional description of the
coupled rotation and deformation of filaments will be
discussed elsewhere. Generalization of these issues to
concentrated suspensions of flexible filaments is a chal-
lenging open problem.
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and N. Price for technical assistance and thank E. J. Hinch
for discussions and J. E. Molloy for advice with actin
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Trust and the European Research Council, Advanced
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FIG. 3 (color online). The stretch-coil transition of single actin filaments. (a)–(c) Snapshots of buckling filaments beyond the
instability, ! ¼ %0:55 (a), %1:9 (b), and %47 (c). Scale bars are 3 %m, indicated times since the first frame are rescaled by _!, and %
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compression along x followed by y. (d) Fractional compression measured by the end-to-end displacement L, as a function of j!j.
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were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.
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ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
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the position hðxÞ from y ¼ 0, its energy is
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where subscripts indicate differentiation. The nonuniform
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lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey
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The eigenvalues "n ¼ L4&n=$
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When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na
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n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
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As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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variance VðxÞ= !Ve along the filament, where !Ve ¼
½Vð%L=2Þ þ VðL=2Þ'=2 is the mean end point fluctuation,
averaged over all available data (some 106 points),
spanning nearly 5 orders of magnitude in ". Although
the ‘‘W’’ shape is at first sight surprising, it simply reflects
the presence of two nodes in the fundamental mode;
it is well-approximated by the " ¼ 0 function ½Wð1ÞðxÞ=
Wð1ÞðL=2Þ'2, a comparison justified by the aforementioned
insensitivity of the mode shape to ". Then, a simple proxy
for the filament-averaged variance is !Ve, shown in Fig. 2(c)
to be suppressed by tension for "*1. It suffices to take
only the first two terms in the expansion (6) to achieve
excellent agreement with both the zero-tension limit and
the large-" behavior !Ve ( "%1, with ‘p as the only free
parameter. We obtain ‘p¼10)3!m, a value consistent
with the known range [13,14,24].

Starting from an arbitrary initial configuration, the vari-
ance in h grows with time, ultimately reaching the steady-
state value discussed above. The characteristic time to
achieve saturation can be computed from the linearized
mode dynamics of hðx; tÞ [16], which also yields (below) a
criterion for the onset of the stretch-coil transition in the
compressional regime. By using the scalings employed in
(3) and a rescaled time T ¼ j _"jt, we find [1]

4j"j½hTþsgnð _"Þh'¼%h4#þ"½ð$2=4%#2Þh##%4#h#':
(7)

The tension term on the right-hand side of (7), unlike the
related force term on the left-hand side of (3), is not a total
derivative with respect to #. This can be traced to a
combination of the anisotropic drag coefficient of a slender
body and the fact that the background flow that enters the
drag force in (7) through the relative velocity of the fila-
ment and the fluid is the source of the tension itself. If
we assume a solution to (7) of the form hð#; TÞ ¼
expð!TÞFð#Þ, with boundary conditions F##ð)$=2Þ ¼
F3#ð)$=2Þ ¼ 0, then we have an eigenvalue problem for
the relaxation time %1=! nearly identical to (3). The

scaling of ! with the mode number indicates that the
slowest relaxation time of the system will be %1 *
%1=!1. Along with the equilibrium fluctuations discussed
above, we have also measured the temporal relaxation to
that variance, identifying a time % for(95% equilibration.
This would correspond to three exponential relaxation
times, and a comparison between 3%1 and the data is shown
in Fig. 2(c), by using the fitted value of ‘p determined in
equilibrium. Taken together, these equilibrium and dy-
namical results indicate the validity of a one-mode dynami-
cal system description of these semiflexible filaments
under tension.
In the compressional regime "< 0, the tension induces

a stretch-coil transition beyond a critical value "+, corre-
sponding to the eigenvalue ! ¼ 0, where the thrusting
force from tension(! _"L2= lnð1=&2eÞ balances the restor-
ing force (A=L2 from the filament bending stiffness. This
instability bears the same relation to Euler buckling (with
uniform end thrust) as the twirling-to-whirling transition
[25] of an elastic filament rotated at one end (with spatially
varying twist) does to the writhing instability of a filament
under uniform twist [26]. Observed filament shapes for
various values of " are shown in Figs. 3(a)–3(c), illustrat-
ing that as the buckling amplitude initially grows the mean
filament orientation ' rotates toward the extensional direc-
tion, and the deformation subsequently relaxes as the (now
positive) tension extends the filament. A convenient mea-
sure of the extent of buckling is the minimum filament end-
to-end distanceL during this process, made dimensionless
as the order parameter P ¼ 1%L=L. Stochastic reorien-
tation of the filament during buckling sometimes moves its
ends out of the focal plane, leading to a noise floor Pnoise ’
0:15. Figure 3(d) shows the variation with j"j of P during
buckling events compared to the theoretical bifurcation
point j"j+ ¼ 0:3932 obtained numerically from Eq. (7).
While the transition is strongly rounded by thermal fluctu-
ations, the threshold is quite consistent with the analytical
prediction. The buckling eigenfunction shown in Fig. 3(d)
has a shape strikingly close to that of the first biharmonic

FIG. 2 (color online). Filament modes, fluctuations, and dynamics in the extensional regime _"> 0. (a) The first four orthonormal
eigenfunctions WðnÞ (solid lines) obtained from (3) for " ¼ 0, and Wð1Þ for " ¼ 100 (red dashed line), illustrating the insensitivity of
the fundamental bending mode shape to the tension. (b) Experimentally measured local variance as a function of position along actin
filaments (symbols), and theoretical contribution from the fundamental mode (solid red line). (c) Filament-end fluctuation variance
[raw data (open circles) and binned (red circles)] and scaled full relaxation time [raw data (open squares) and binned (green squares)]
as a function of tension. Theoretical results are solid red and green curves, respectively.
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were stored at!80 "C. Polymerization to form filamentous
actin (F-actin) was achieved by addition of 1=10th volume
of 10# ABþ, then stabilized by the addition of an equimo-
lar amount (to G-actin monomers) of Alexa Fluor 488
phalloidin (Invitrogen), dissolved to a final concentration
of %10 !M of G-actin, and then stored in the dark at 4 "C
for up to 3 months. For an experiment, an aliquot of
10# AB! stock was thawed and mixed with 9 parts of
deionized water-glycerol mixture and degassed to reduce
dissolved oxygen. Photobleaching was reduced by adding
to the final buffer (termed AG) an oxygen scavenger
consisting of 20 mM dithiothreitol, 0:2 mg=ml glucose
oxidase, 0:5 mg=ml of catalase, and 3 mg=ml of glucose.
The concentration of F-actin suitable for the experiments
was %2 nM and yielded filaments with lengths from 3 to
18 !m.

Consider an elastic filament of contour length L, diame-
ter a, with " & a=L ' 1, bending modulus A ¼ kBT‘p,
where ‘p is the persistence length, lying in the xy plane
between x ¼ )L=2. For small-amplitude fluctuations in
the position hðxÞ from y ¼ 0, its energy is

E ¼ 1

2

Z L=2

!L=2
dxfAh2xx þ #ðxÞh2xg; (1)

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

#ðxÞ ¼ 2$! _%

lnð1="2eÞ ðL
2=4! x2Þ; (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for _%> 0 and compressional
otherwise [20]. We first focus on extensional suppression
of fluctuations. The often-used Fourier decomposition
of hðxÞ [13,16] is incompatible with the force- and
torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set

of eigenfunctionsWðnÞ (and eigenvalues &n) with boundary
conditions Wxxð)L=2Þ ¼ Wxxxð)L=2Þ ¼ 0 [3,21]. Under
the convenient rescaling ' ¼ $x=L, these obey

WðnÞ
4' ! !@'½ð$2=4! '2ÞWðnÞ

' - ¼ "nW
ðnÞ: (3)

The eigenvalues "n ¼ L4&n=$
4A are functions of [22]

! ¼ 2! _%L4

$3A lnð1="2eÞ : (4)

When ! ¼ 0, the WðnÞ are eigenfunctions of the one-
dimensional biharmonic equation

W!¼0 ¼ A sinkxþ B sinhkxþD coskxþ E coshkx: (5)

The wave vectors kn satisfy cosknL coshknL ¼ 1, with
k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
1=2Þ$ for n . 1. Even if the W’s cannot be found analyti-
cally [23], a numerical solution for ! ! 0 is straightfor-
ward. Figure 2(a) shows the first four WðnÞ for ! ¼ 0 and
Wð1Þ for ! ¼ 100; remarkably, the shape of the fundamen-
tal bending mode is nearly independent of !, a result to
which we return below. A point not previously recognized
[13] is that if hðxÞ ¼ P

nanW
ðnÞðxÞ, then for any ! the

energy decomposes into a sum of contributions from inde-
pendent modes: E ¼ ð1=2ÞPn&na

2
n. This follows from in-

tegrations by parts, Eq. (3), and boundary conditions that
render the operator self-adjoint and the WðnÞ orthogonal
(and we assume they are normalized). Equipartition then
yields hamani ¼ (mnL

4=$4‘p"n, and the local variance
VðxÞ ¼ h½hðxÞ ! #h-2i is

Vðx;!Þ ¼ L3

‘p$
4

X1

n¼1

WðnÞðxÞ2
"nð!Þ

: (6)

As the contribution to "n from the bending energy
grows like ðnþ 1=2Þ4, the fundamental mode Wð1Þ domi-
nates. This is seen in Fig. 2(b), where we plot the measured

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference$P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (c) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.
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k0 ¼ 0 (the constant solution Wð0Þ ¼ 1), and knL ’ ðnþ
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DNA polyhedra

A rigid tetrahedron formed by self-assembly from DNA,


figure from Goodman et al, Science 310 p1661 (2005)
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motility due to surface-bound motors (20). In the
bulk of the sample, the active MT network con-
tracted into asterlike structures (16, 17); however,
a number of bundles remained attached to the

edges of the flow chamber or partially trapped
under air bubbles, and thus separated from the
bulk of the contracting structures. Once separated,
these bundles exhibited uniform large-scale beat-

ing patterns (Fig. 1, B and C, fig. S2, and movies
S1 to S3). To ensure that backgroundMTs did not
interfere with the beating patterns, in some exper-
iments we displaced the unbound MT/kinesin
mixture with a buffer containing only ATP, PEG,
and kinesin clusters (but no MTs). In these sam-
ples, the attached bundles continued to beat for
more than 1 hour. The primary factor that deter-
mines the beating frequency is the length of the
bundle, which can range from less than 10 mm to
more than 100 mm, with longer bundles beating
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and that the oscillatory beating is driven by the
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lowing them to slide past each other over a sig-
nificant distance while maintaining a well-defined
separation (23). In depletion-driven bundling, it
is not obvious if individual MTs slide freely past
each other or remain fixed in a more static struc-
ture due to large interfilament friction. The latter
was found to be the case for depletion-driven
bundling of actin filaments (24, 25). Using a re-
cently developed method, we investigated the
dynamics of MT bundles confined to quasi–two-
dimensional (2D) chambers and found that MTs
slide freely past each other, indicating a relatively
low interfilament friction (Fig. 2, A and B, and

Fig. 1. A minimal system of MTs, molecular motors, and depleting polymer assembles into actively
beating MT bundles. (A) Schematic illustration of all components required for assembly of active bundles.
(B) A sequence of images illustrating the beating pattern of an active bundle over one beat cycle. Scale
bar, 30 mm. (C) The conformation of the bending MT bundle indicates a fairly symmetric beating pattern
that is reminiscent of those found in cilia and flagella. (D) Sequence of images showing one beating cycle
of a flagellum from Chlamydomonas reinhardtii. Scale bar, 5 mm.

Fig. 2. A short MT bound to a longer filament by
the depletion force exhibits thermally driven sliding
motion. (A) A time-lapse observation of two sliding
MTs over a period of 15 min. Scale bar, 3 mm. At
this depletant concentration, unbinding events are

very rare. (B) A trajectory of a shorter MT diffusing while bound to the longer MT. The position is measured
relative to the end point of a longer MT. (C) MSD of the relative diffusion between the two MTs. The
subdiffusive behavior indicates viscoelastic coupling between the two filaments. The MSD data are
averaged for six filament pairs in which shorter filaments were between 3 and 4 mm long. In each
case, the dynamics were observed for anywhere between 10 and 30 min.
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Chapter 2

Polymers

2.1 Persistent random walks

2.1.1 von Mises-Fisher (vMF) distribution

The PDF of the vMF distribution on the unit sphere n 2 S reads

f(n|µ) = C
2

en·µ. (2.1)

The parameter µ 2 S determines the mean direction and  the spread, with  = 0
corresponding to a uniform distribution and  ! 1 to a �-distribution at n = µ. Assuming
w.l.o.g. µ = (0, 0, 1) and using spherical coordinates n = (cos� sin ✓, sin� sin ✓, cos ✓) with
(�, ✓) 2 [0, 2⇡)⇥ [0, ⇡], the normalization constant C

2

can be computed from

1 = C
2

Z
2⇡

0

d�

Z ⇡

0

d✓ sin ✓ f(n|µ)

= C
2

Z
2⇡

0

d�

Z ⇡

0

d✓ sin ✓ e cos ✓

= C
2

4⇡ sinh


, (2.2)

yielding

C
2

=


4⇡ sinh
. (2.3)

Similarly, one finds for the mean

E[n|µ] = C
2

Z
dnn en·µ =

✓
1

tanh
� 1



◆
µ =: �µ, (2.4a)

where the scale-factor �() exhibits the following limiting behaviors

lim
!0

�() = 0, (2.4b)

lim
!1

�() = 1. (2.4c)
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2.1.2 vMF polymer model

Consider an idealized polymer consisting of i = 1, . . . , N segments of length �. Each
segment has an orientation µi, so that the vector connecting the two polymer ends is given
by

R(N) =
NX

i=1

Ri = �

NX

i=1

µi. (2.5)

The total length of the polymer is L = N� and w.l.o.g. we choose R(0) and µ

1

= (0, 0, 1).
We assume that the conditional PDF of µi for a given µi�1

, is a vMF-distribution with
spread parameter ,

f(µi|µi�1

) = C
2

eµi·µi�1 . (2.6)

We would like to compute correlation functions and statistical moments of R(N) in
the limit of large N . Of particular interest are the mean end-position

E[R(N)|µ
1

] = �

NX

n=1

E[µn|µ1

], (2.7a)

the squared end-to-end distance

D(N) = E[R(N) ·R(N)], (2.7b)

and the excursion PDF

pN(r) = E
⇥
�(r �R(N))

⇤
. (2.7c)

Mean end-position and persistence length

To compute the mean end-position E[R(N)|µ
1

] for a given initial condition µ

1

, let us first
note that the conditional expectation value E[µn|µ1

] can be computed as

E[µn|µ1

] = Cn�1

2

Z
µn e

PN
i=2 µi·µi�1

nY

i=2

dµi

= � Cn�2

2

Z
µn�1

e
Pn�1

i=2 µi·µi�1

n�1Y

i=2

dµi

· · ·
= �n�1

µ

1

, (2.8)

yielding

E[R(N)|µ
1

] = �

NX

n=1

�n�1

µ

1

= �

N�1X

n=0

�n
µ

1

= �
1� �N

1� �
µ

1

. (2.9)
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In the limit case of a uniform distribution,  ! 0, we find at fixed N

E[R(N)|µ
1

] = �µ
1

(2.10a)

whereas for an infinitely sti↵ polymer with  ! 1

E[R(N)|µ
1

] = �Nµ

1

, (2.10b)

illustrating that the vMF-model interpolates between undirected random walking and bal-
listic motion.

An important quantity that characterizes the sti↵ness of a polymer is the persistence
length LP , intutively defined in terms of the asymptotically exponential decay of the ori-
entation correlation function

hcos ✓Ni ⌘ E[µN · µ
1

] ' e�L/LP (2.11)

for large polymer length L = N�. Noting that

E[µN · µ
1

] = E[µn|µ1

] · µ
1

, (2.12)

we can obtain LP from (2.8) by

1

LP

= � lim
L!1

1

L
lnhµN · µ

1

i

= � lim
N!1

1

�N
ln �N�1

= �1

�
ln �. (2.13)

Inserting the explicit expression �() from (2.4a), we find for  ⌧ 1

LP ' �

ln(3/)
, (2.14a)

whereas for  � 1

LP ' �. (2.14b)

Squared end-to-end distance

To compute the squared end-to-end distance

D(N) = E[R(N) ·R(N)] = �2

NX

i,j=1

E[µi · µj], (2.15)

we may use that the orientation correlation is translation-invariant

E[µi · µj] = �|i�j|. (2.16)
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Computing the double sum (2.15), one obtains

D(N) = �2

N � �
�
2� 2�N + �N

�

(� � 1)2
, (2.17)

and from this the limiting behaviors

lim
!0

D(N) = lim
�!0

D(N) = �2N, (2.18a)

lim
!1

D(N) = lim
�!1

D(N) = �2N2, (2.18b)

corresponding to normal di↵usion and ballistic growth. Conversely, when keeping  < 1
fixed but letting the number of monomers N ! 1, then

D() := lim
N!1

D

N
= �2

1 + �

1� �
, (2.18c)

This means that, for finite , the end-to-end distance increases with N1/2 corresponding
to normal di↵usion. For floppy polymers with  ! 0, one finds that D ! �2, whereas for
large 

lim
!1

D


= 2�2. (2.19)

That is, for long sti↵ polymers with  � 1, we have

D ' 2�2 = 2�LP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
✓

3

2⇡DN

◆
3/2

e�3r

2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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N!1

1

�N
ln �N�1

= �1

�
ln �. (2.13)

Inserting the explicit expression �() from (2.4a), we find for  ⌧ 1

LP ' �

ln(3/)
, (2.14a)

whereas for  � 1

LP ' �. (2.14b)

Squared end-to-end distance

To compute the squared end-to-end distance

D(N) = E[R(N) ·R(N)] = �2

NX

i,j=1

E[µi · µj], (2.15)

we may use that the orientation correlation is translation-invariant

E[µi · µj] = �|i�j|. (2.16)
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Computing the double sum (2.15), one obtains

D(N) = �2

N � �
�
2� 2�N + �N

�

(� � 1)2
, (2.17)

and from this the limiting behaviors

lim
!0

D(N) = lim
�!0

D(N) = �2N, (2.18a)

lim
!1

D(N) = lim
�!1

D(N) = �2N2, (2.18b)

corresponding to normal di↵usion and ballistic growth. Conversely, when keeping  < 1
fixed but letting the number of monomers N ! 1, then

D() := lim
N!1

D

N
= �2

1 + �

1� �
, (2.18c)

This means that, for finite , the end-to-end distance increases with N1/2 corresponding
to normal di↵usion. For floppy polymers with  ! 0, one finds that D ! �2, whereas for
large 

lim
!1

D


= 2�2. (2.19)

That is, for long sti↵ polymers with  � 1, we have

D ' 2�2 = 2�LP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
✓

3

2⇡DN

◆
3/2

e�3r

2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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N
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1� �
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D


= 2�2. (2.19)

That is, for long sti↵ polymers with  � 1, we have

D ' 2�2 = 2�LP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
✓

3

2⇡DN

◆
3/2

e�3r

2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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2.1.2 vMF polymer model

Consider an idealized polymer consisting of i = 1, . . . , N segments of length �. Each
segment has an orientation µi, so that the vector connecting the two polymer ends is given
by

R(N) =
NX

i=1

Ri = �

NX

i=1

µi. (2.5)

The total length of the polymer is L = N� and w.l.o.g. we choose R(0) and µ

1

= (0, 0, 1).
We assume that the conditional PDF of µi for a given µi�1

, is a vMF-distribution with
spread parameter ,

f(µi|µi�1

) = C
2

eµi·µi�1 . (2.6)

We would like to compute correlation functions and statistical moments of R(N) in
the limit of large N . Of particular interest are the mean end-position

E[R(N)|µ
1

] = �

NX

n=1

E[µn|µ1

], (2.7a)

the squared end-to-end distance

D(N) = E[R(N) ·R(N)], (2.7b)

and the excursion PDF

pN(r) = E
⇥
�(r �R(N))

⇤
. (2.7c)

Mean end-position and persistence length

To compute the mean end-position E[R(N)|µ
1

] for a given initial condition µ

1

, let us first
note that the conditional expectation value E[µn|µ1

] can be computed as

E[µn|µ1

] = Cn�1

2

Z
µn e

PN
i=2 µi·µi�1

nY

i=2

dµi

= � Cn�2

2

Z
µn�1

e
Pn�1

i=2 µi·µi�1

n�1Y

i=2

dµi

· · ·
= �n�1

µ

1

, (2.8)

yielding

E[R(N)|µ
1

] = �

NX

n=1

�n�1

µ

1

= �

N�1X

n=0

�n
µ

1

= �
1� �N

1� �
µ

1

. (2.9)
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Computing the double sum (2.15), one obtains

D(N) = �2

N � �
�
2� 2�N + �N

�

(� � 1)2
, (2.17)

and from this the limiting behaviors

lim
!0

D(N) = lim
�!0

D(N) = �2N, (2.18a)

lim
!1

D(N) = lim
�!1

D(N) = �2N2, (2.18b)

corresponding to normal di↵usion and ballistic growth. Conversely, when keeping  < 1
fixed but letting the number of monomers N ! 1, then

D() := lim
N!1

D

N
= �2

1 + �

1� �
, (2.18c)

This means that, for finite , the end-to-end distance increases with N1/2 corresponding
to normal di↵usion. For floppy polymers with  ! 0, one finds that D ! �2, whereas for
large 

lim
!1

D


= 2�2. (2.19)

That is, for long sti↵ polymers with  � 1, we have

D ' 2�2 = 2�LP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
✓

3

2⇡DN

◆
3/2

e�3r

2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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Computing the double sum (2.15), one obtains

D(N) = �2

N � �
�
2� 2�N + �N

�

(� � 1)2
, (2.17)

and from this the limiting behaviors

lim
!0

D(N) = lim
�!0

D(N) = �2N, (2.18a)

lim
!1

D(N) = lim
�!1

D(N) = �2N2, (2.18b)

corresponding to normal di↵usion and ballistic growth. Conversely, when keeping  < 1
fixed but letting the number of monomers N ! 1, then

D() := lim
N!1

D

N
= �2

1 + �

1� �
, (2.18c)

This means that, for finite , the end-to-end distance increases with N1/2 corresponding
to normal di↵usion. For floppy polymers with  ! 0, one finds that D ! �2, whereas for
large 

lim
!1

D


= 2�2. (2.19)

That is, for long sti↵ polymers with  � 1, we have

D ' 2�2 = 2�LP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
✓

3

2⇡DN

◆
3/2

e�3r

2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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Computing the double sum (2.15), one obtains

D(N) = �2

N � �
�
2� 2�N + �N

�

(� � 1)2
, (2.17)

and from this the limiting behaviors

lim
!0

D(N) = lim
�!0

D(N) = �2N, (2.18a)

lim
!1

D(N) = lim
�!1

D(N) = �2N2, (2.18b)

corresponding to normal di↵usion and ballistic growth. Conversely, when keeping  < 1
fixed but letting the number of monomers N ! 1, then

D() := lim
N!1

D

N
= �2

1 + �

1� �
, (2.18c)

This means that, for finite , the end-to-end distance increases with N1/2 corresponding
to normal di↵usion. For floppy polymers with  ! 0, one finds that D ! �2, whereas for
large 

lim
!1

D


= 2�2. (2.19)

That is, for long sti↵ polymers with  � 1, we have

D ' 2�2 = 2�LP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
✓

3

2⇡DN

◆
3/2

e�3r

2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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To obtain a prediction for the mean force f required to stretch the polymer by a small
amount dr, we can exploit the general thermodynamic relation

dE = �W + �Q, (2.23a)

where work and heat increments are defined as usual by

�W = �f · dr , �Q = TdS, (2.23b)

with T denoting temperature. If one neglect self-avoidance interactions, which are present
in real polymers, the energy remains constant during a change of confirmation, dE = 0.
Hence,

dS =
f

T
· dr (2.24)

and the stretch force components are obtained as

fi = T

✓
@S

@ri

◆
= �3kBT

DN
ri. (2.25)

Thus far, our calculations implicitly assumed a microcanonical setting, since we focussed on
an isolated polymer. In most experiments, polymers are surrounded by liquid molecules
that may act as a canonical bath. If the polymer is su�ciently long (thermodynamic
limit) and if the coupling between polymer and bath is su�ciently weak, then one can
safely assume that microcanonical and canonical ensembles become equivalent. In this
case, �f is the force needed to stretch a polymer in a solvent bath of temperature T .

Furthermore, it is also instructive to compute the corresponding free-energy

F := E � TS = E � TS
0

+ kBT
3r2

2DN
. (2.26)

This is essentially a thermodynamic version of Hooke’s law

F = F
0

+
K

2
r

2 , K =
3kBT

DN
. (2.27)

For long sti↵ polymers we have DN ' 2�NLP = 2LLP , we find for the spring-constant

K =
3kBT

2LLP

. (2.28)

This means, for example, that the persistence length Lp can be inferred from force mea-
surements if temperature T and polymer length L are known.
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Computing the double sum (2.15), one obtains

D(N) = �2

N � �
�
2� 2�N + �N

�

(� � 1)2
, (2.17)

and from this the limiting behaviors

lim
!0

D(N) = lim
�!0

D(N) = �2N, (2.18a)

lim
!1

D(N) = lim
�!1

D(N) = �2N2, (2.18b)

corresponding to normal di↵usion and ballistic growth. Conversely, when keeping  < 1
fixed but letting the number of monomers N ! 1, then

D() := lim
N!1

D

N
= �2

1 + �

1� �
, (2.18c)

This means that, for finite , the end-to-end distance increases with N1/2 corresponding
to normal di↵usion. For floppy polymers with  ! 0, one finds that D ! �2, whereas for
large 

lim
!1

D


= 2�2. (2.19)

That is, for long sti↵ polymers with  � 1, we have

D ' 2�2 = 2�LP . (2.20)

Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian

p(r) '
✓

3

2⇡DN

◆
3/2

e�3r

2/(2DN). (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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Computing the double sum (2.15), one obtains
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That is, for long sti↵ polymers with  � 1, we have
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Excursion PDF & thermodynamics

Unfortunately, it is not possible to compute the excursion PDF (2.7c) exactly for the
vMF model1. However, the central limit theorem combined with (2.18c) implies that, for
large N , the excursion PDF will approach a Gaussian
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For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r

as a macroscopic state-variable, that can be realized by a number of di↵erent polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N , the number of microstates realizing
a specific the macrostate r is �3p(r), assuming the spatial resolution is of the order of the
segment length �. The corresponding microcanonical entropy is given by

S ' kB ln[�3p(r)] = S
0

� kB
3r2

2DN
. (2.22)

1The vMF polymer model is equivalent to a classical Heisenberg spin model [Fis64].
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To obtain a prediction for the mean force f required to stretch the polymer by a small
amount dr, we can exploit the general thermodynamic relation

dE = �W + �Q, (2.23a)

where work and heat increments are defined as usual by

�W = �f · dr , �Q = TdS, (2.23b)

with T denoting temperature. If one neglect self-avoidance interactions, which are present
in real polymers, the energy remains constant during a change of confirmation, dE = 0.
Hence,

dS =
f

T
· dr (2.24)

and the stretch force components are obtained as

fi = T

✓
@S

@ri
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= �3kBT

DN
ri. (2.25)

Thus far, our calculations implicitly assumed a microcanonical setting, since we focussed on
an isolated polymer. In most experiments, polymers are surrounded by liquid molecules
that may act as a canonical bath. If the polymer is su�ciently long (thermodynamic
limit) and if the coupling between polymer and bath is su�ciently weak, then one can
safely assume that microcanonical and canonical ensembles become equivalent. In this
case, �f is the force needed to stretch a polymer in a solvent bath of temperature T .

Furthermore, it is also instructive to compute the corresponding free-energy

F := E � TS = E � TS
0

+ kBT
3r2

2DN
. (2.26)

This is essentially a thermodynamic version of Hooke’s law

F = F
0

+
K

2
r

2 , K =
3kBT

DN
. (2.27)

For long sti↵ polymers we have DN ' 2�NLP = 2LLP , we find for the spring-constant

K =
3kBT

2LLP

. (2.28)

This means, for example, that the persistence length Lp can be inferred from force mea-
surements if temperature T and polymer length L are known.
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that may act as a canonical bath. If the polymer is su�ciently long (thermodynamic
limit) and if the coupling between polymer and bath is su�ciently weak, then one can
safely assume that microcanonical and canonical ensembles become equivalent. In this
case, �f is the force needed to stretch a polymer in a solvent bath of temperature T .

Furthermore, it is also instructive to compute the corresponding free-energy

F := E � TS = E � TS
0

+ kBT
3r2

2DN
. (2.26)

This is essentially a thermodynamic version of Hooke’s law

F = F
0

+
K

2
r

2 , K =
3kBT

DN
. (2.27)

For long sti↵ polymers we have DN ' 2�NLP = 2LLP , we find for the spring-constant

K =
3kBT

2LLP

. (2.28)

This means, for example, that the persistence length Lp can be inferred from force mea-
surements if temperature T and polymer length L are known.

39

mailto:dunkel@math.mit.edu


dunkel@math.mit.edu

• IDEA:  include additional free energy term to account for self repulsion 

• ASSUMPTIONS: Self-avoidance (Flory’s scaling argument)

The simplest way of accounting for self-avoidance is to include in Eq. (2.27) a free-energy
contribution Fe that accounts for excluded volume e↵ects. Consider a polymer consisting of
N � 1 monomers of volume vd with fixed end-to-end distance r. Flory’s scaling argument
assumes that for a fixed |r|, the N monomers may (very roughly) explore a volume of |r|d,
where d is the space dimension. The overlap probability for a single monomer is given by
the volume filling fraction � = vdN/|r|d. Assuming short-range repulsion, so that F is
extensive, we have for N particles

Fe ' NkBT � = NkBT
vdN

|r|d , (2.29)

where kBT accounts for the thermal kinetic energy. Adding Fe to Eq. (2.27), we find in d
dimensions

F = F
0

+NkBT

✓
vdN

|r|d +
|r|2d
2DdN2

◆
. (2.30)

To obtain the equilibrium distance r⇤, we must minimize this expression with respect to
r = |r|, which gives

0 =
dF

d|r| = �d
vdN

rd+1

⇤
+

d

DdN2

r⇤ (2.31)

and therefore

r⇤ = (Ddvd)
1/d+2N3/(d+2). (2.32)

Thus, explicitly

d = 1 : r⇤ / N (2.33a)

d = 2 : r⇤ / N3/4, (2.33b)

d = 3 : r⇤ / N3/5. (2.33c)

The result is trivial for d = 1, seems to be exact for d = 2 when compared to simulations,
and is very close to best numerical results N0.589... for d = 3.
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To obtain a prediction for the mean force f required to stretch the polymer by a small
amount dr, we can exploit the general thermodynamic relation

dE = �W + �Q, (2.23a)

where work and heat increments are defined as usual by
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in real polymers, the energy remains constant during a change of confirmation, dE = 0.
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2.2 Bead-spring model

To obtain a simple dynamical model for the motion of a polymer in a solvent fluid, we can
consider a chain consisting of ↵ = 1, . . . , N beads represent monomers at positions X↵(t).
Neglecting inertial e↵ects and hydrodynamic interactions, we may assume that the dynam-
ics of a single bead is governed by the over-damped Langevin equation

dX↵(t) = �r
x↵U({X↵}) dt+

p
2D ⇤ dB↵(t), (2.34)

whereD is the thermal di↵usion constant of a bead. The potential U contains contributions
from elastic nearest neighbor interactions Ue, from bending Ub and, to implement self-
avoidance, steric short-range repulsion U :

U = Ue + Ub + Us (2.35)

Defining (N � 1) chain link vectors R↵ and their orientations µ↵ by

R↵ = X↵+1

�X↵ , µ↵ =
R↵

||R↵||
(2.36)

the potentials can be written as sums over 2-body and 3-body interactions

Ue =
N�1X

↵=1

u(||R↵||), (2.37a)

Ub =
N�2X

↵=1

b(µ↵ · µ↵+1

), (2.37b)

Us =
NX

↵=1

NX

�=1,� 6=↵

s(||X↵ �X�||). (2.37c)

Specifically, the elastic spring potential u(r) and the steric repulsion potential s(r) en-
code 2-body interactions, whereas the bending potential b(q) involves 3-body interactions.2

Plausible choices are

u(r) =
K

2
(r � �)2 , b(q) =

B

2
(q � 1)2 , s(r) =

S e�r/�

r⌫
(2.38)

for some ⌫ > 1. Although (2.34) can only be solved numerically, we know that the associ-
ated stationary equilibrium distribution is given by

pN({x↵}) =
1

ZN

exp


�U({X↵})

D

�
, (2.39)

where

ZN =

Z  NY

↵=1

d3x↵

!
exp


�U({x↵})

D

�
. (2.40)

2In principle, one could still include a potential contribution U

t

that penalizes twisting, which would
have to involve 4-bead interactions, for defining ‘twist’ requires three subsequent vectors {µ

↵�1,µ↵

,µ

↵+1}.
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Needs to be solved numerically but stationary distribution known
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