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DNA = biopolymer pair

~ 3m per cell
~ 0714 cells/human

> max. distance between
Earth and Pluto
(~50AU =75 x I0A2 m)



mailto:dunkel@math.mit.edu

DNA packaging

Virus Phi-29

http://www.mit.edu/~kardar/teaching/projects/dna_packing website/
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DNA packaging in eukaryotes
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Nucleosomes

octamer of core histones:
H2A, H2B, H3 H4 (each one x2)

core DNA

histone H1 — linker DNA
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DNA packaging in eukaryotes
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DNA packaging in humans
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DNA packaging in humans

D Nuclear

C
UNFOLDED POLYMER scale

FOLDED POLYMER

Equilibrium
globule

Chromosome
territories

Cross-section view

Chromosome
scale

Closed

Fractal Cross-section view

globule Megabase
O scale

Fractal =
globule

Lieberman-Aiden et al. (201 I) Science dunkel@mathmit.cdu


mailto:dunkel@math.mit.edu

Cyto-skeleton

Nucleus
Actin

Microtubuli

mechanical properties,
network topology, ...

eukaryotic cells (source: wiki)
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Cyto-skeleton

microtubules

— 25-nm
R W TR | dameter

actin filaments
e —
diameter

intermediate filaments

P Ry e gy T 0 10-nm
T ey T R gt diameter

http://library.thinkquest.org/C004535/cytoskeleton.html
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Amoeba




Actin bundles

http://www-ssrl.slac.stanford.edu/research/highlights archive/actinin.html

o-Actinin binds Filamin cross-
actin into parallel  links actin in
filament bundl es. loose networks.

Cross-linking of actin filaments
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Cyto-skeleton

photo:
Philipp Khuc- Trong

Microtubuli network in Drosophila embryo
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Polymers & filaments

Dogic Lab, Brandeis

Physical parameters
(e.g. bending rigidity)
from fluctuation
analysis

Drosophila oocyte
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Actin in 2D

F-Actin

helical
filament

Dogic Lab (Brandeis)
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Actin in 2D

F-Actin

helical
filament

Dogic Lab (Brandeis)
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Actin in 2D

F-Actin

helical
filament

with attractive solvent

Dogic Lab (Brandeis)
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Actin in flow

week ending

PRL 108, 038103 (2012) PHYSICAL REVIEW LETTERS 20 JANUARY 2012
(c)
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FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference A P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (¢) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.

Kantsler & Goldstein (2012) PRL
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Actin in flow

outlet, AP

Kantsler & Goldstein (2012) PRL
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Actin in flow

Kantsler & Goldstein (2012) PRL
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Theory

1 L/2
£ = j dx{AR, + o ()R} (1)
2J-Lp

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

_ 2wy B
o (x) In(1/e2e) (L*/4 — x°), (2)
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Theory

of eigenfunctions W (and eigenvalues A,) with boundary
conditions W, .(=L/2) = W, .. (*L/2) = 0 [3,21]. Under
the convenient rescaling & = 7rx/L, these obey

Wi = Sol(m2 /4 — E)WI = AW (3)
The eigenvalues A, = L*A, /7*A are functions of [22]

2uyL?
mAIn(l/€e%e)

2 = (4)

When 3 = 0, the W are eigenfunctions of the one-
dimensional biharmonic equation

Ws_o = Asinkx + Bsinhkx + D coskx + E coshkx. (5)

dunkel@math.mit.edu
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Theory vs. experiment

(and we assume they are normalized). Equipartition then
yields {(a,,a,) = 68,,L*/7*€,A,, and the local variance
V(x) = ([h(x) — hF) is
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Bio-technology

&
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DNA Origami - principle

Strong M: Protein Nanomachines. PLoS Biol 2/3/2004: e73
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e

DNA Origami - 2D

http://www.nature.com/scitable/blog/bio2.0/dna_origami
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http://www.nature.com/scitable/blog/bio2.0/dna_origami
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DNA polyhedra

edge ~ 10nm

A rigid tetrahedron formed by self-assembly from DNA,
figure from Goodman et al, Science 310 p1661 (2005)
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Computation

Mark Bathe, MIT

http://lcbb.mit.edu/software/index.html
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Artificial cilia

~ 50 beats / sec speed ~100 pm/s

Goldstein et al (201 1) PRL
dunkel@math.mit.edu
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Artificial cilia

A
Biotin-labeled ? \

kinesin:

Streptavidin: '/
_l_

Microtu bules\

Polyethelene . <
glycol: 1Y)

Depletion <17
force Vo

Dogic Lab (Brandeis) Science 201 |

dunkel@math.mit.edu


mailto:dunkel@math.mit.edu

Artificial cilia

Dogic Lab
(Brandeis)

Science 201 |
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Basic polymer models

Karjalainen et al (2014) Polym Chem

http://dx.doi.org/10.1039/1759-9962/2010
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2.1 Persistent random walks

2.1.1 von Mises-Fisher (vMF') distribution
The PDF of the vMF' distribution on the unit sphere n € S reads
f(n|p) = Coe™™ ", (2.1)

The parameter u € S determines the mean direction and k the spread, with kK = 0
corresponding to a uniform distribution and x — oo to a d-distribution at n = p. Assuming
w.l.o.g. = (0,0, 1) and using spherical coordinates n = (cos ¢ sin 6, sin ¢ sin @, cos ) with
(¢,0) € [0,27) x [0, 7], the normalization constant Cy can be computed from

2m s
1 = OQ/ dgb/ df sinf f(n|u)
0 0

27 T
= C’g/ dgb/ df sin 6 ™ <s?
0 0

47 sinh
_ 02 7T S11 /f’ <22)

K
yielding
K

- 41 sinh k-

Similarly, one finds for the mean

Eln|p] = Cz/dnn e H = ( : 1) B =:opu, (2.4a)

tanhx K
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von Mises-Fisher distribution

K‘—
k=10
x =100

arrows = mean direction

dunkel@math.mit.edu
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2.1.1 von Mises-Fisher (vMF) distribution

f(nlp) = Coerm. (2.1)

1 1
Elnlp] = Cg/dnn et = < - ) B =:0pu, (2.4a)

tanhk kK

where the scale-factor o(k) exhibits the following limiting behaviors

lim (k) = 0, (2.4b)
lim o(k) = 1. (2.4c)

K— 00

0.8 -
0.6 -
0.4 -

0.2+
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2.1.2 vMF polymer model

Consider an idealized polymer consisting of ¢ = 1,..., N segments of length \. Each
segment has an orientation u,, so that the vector connecting the two polymer ends is given
by

R(N) = ZRi — AZM. (2.5)

The total length of the polymer is L = N\ and w.l.o.g. we choose R(0) and p; = (0,0, 1).
We assume that the conditional PDF of u, for a given u, , is a vMF-distribution with

spread parameter k,

f(l%;“%—l) = Che™Hiti-1, (2-6)

Karjalainen et al (2014) Polym Chem

http://dx.doi.org/10.1039/1759-9962/2010
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We would like to compute correlation functions and statistical moments of R(N) in
the limit of large N. Of particular interest are the mean end-position

E[R(N)|py] = A Elp, | my], (2.7a)

n=1
the squared end-to-end distance
D(N) = E[R(N) - R(N)], (2.7h)
and the excursion PDF

py(r) = ]E[é('r — R(N))} (2.7¢)
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[Mean end-positioraand persistence length

To compute the mean end-position E[R(N)|u,] for a given initial condition p,, let us first
note that the conditional expectation value E[u,, |pt,] can be computed as

_ LN L -
Elp,|p,] = C3 1/%6 i || K7

=2

— O-n_ll,lzl, (28)
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[Mean end-positiorg and persistence length

N N-1 1—O'N
E|R(N)|p| = )\Zan_lﬁ’q:)\zanlh:)\ 11—, M
n=1 n=0

In the limit case of a uniform distribution, k — 0, we find at fixed N
E[R(N)|p] = Ay (2.10a)
whereas for an infinitely stiff polymer with x — oo

ER(N)|m] = ANpy, (2.10b)

illustrating that the vMF-model interpolates between undirected random walking and bal-
listic motion.
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Mean end-position andﬁ)ersistence lengtlra L P

(cosOn) = B[y - py] = e H/EP (2.11)
for large polymer length L = N . Noting that

Elpy - pq] = Elpy o] - pg, (2.12)
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Mean end-position and@ersistence lengtlra L P

(cosOn) = B[y - py] = e H/EP (2.11)
for large polymer length L = N . Noting that

Elpy - ] = Elpy|pd - o, (2.12)
we can obtain Lp from (2.8) by

1 .1
Lo = _Lh_{{)lozlnE[NN‘Hl]

1
— — lim — InoN-1

N—soo AN

1
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Mean end-position and@ersistence lengtlra L P

(cosOn) = By - ] = e~ H/Er

for large polymer length L = N . Noting that
Elpy - py] = Elpey|pe] - gy,

we can obtain Lp from (2.8) by
1 1

Lo = _Lh_{{)lozlnE[NN'Hl]
_ : 1 N-1
= oM

11
= ——Ino.
A

Inserting the explicit expression o(k) from (2.4a), we find for K < 1

whereas for Kk > 1

(2.11)

(2.12)

(2.13)

(2.14a)

(2.14D)
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Squared end-to-end distance

To compute the squared end-to-end distance

D(N) = E[R(N)-R(N)| =N Elp; - ;). (2.15)

ij=1
we may use that the orientation correlation is translation-invariant

Elp, - pj] = "7, (2.16)

Computing the double sum (2.15), one obtains
N—J<2—20N+UN)

D(N) = \? 2.17
(N) o , (2.17)
and from this the limiting behaviors
lim D(N) = lim D(N) = \*N, (2.18a)
k—0 o—0
lim D(N) = lim D(N) = \*N?, (2.18b)
K—00 o—1

corresponding to normal diffusion and ballistic growth. Conversely, when keeping x < oo
fixed but letting the number of monomers N — oo, then
D l1+o

D(k) := ]\}EHOON — )\21 e

(2.18c)
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Squared end-to-end distance

To compute the squared end-to-end distance

D(N) = E[R(N) R(N)] =X > Elu, - p], (2.15)
lim D(N) = liir(l)D(N):)\QN, (2.18a)
lim D(N) = iﬂD(N):AQNQ, (2.18b)

corresponding to normal diffusion and ballistic growth. Conversely, when keeping v < oo
fixed but letting the number of monomers N — oo, then

D 1+o

T 22
D(k) = ]\}1_r>noo ~ A o (2.18¢)
This means that, for finite x, the end-to-end distance increases with N'/? corresponding A
to normal diffusion. For floppy polymers with x — 0, one finds that D — A2, whereas for
large K
D
lim — = 2\%. (2.19)
K—00 [
That is, for long stiff polymers with £ > 1, we have
D ~2)\*k = 2\Lp. (2.20)
J

dunkel@math.mit.edu
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Excursion PDF & thermodynamics

pn(r) =E|[6(r — R(N))

Unfortunately, it is not possible to compute the excursion PDF (2.7¢) exactly for the
vMF model'. However, the central limit theorem combined with (2.18¢) implies that, for
large N, the excursion PDF will approach a Gaussian

3\ ..
p(r):( ) e =37/ (2DN), (2.21)

2r DN

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r
as a macroscopic state-variable, that can be realized by a number of different polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N, the number of microstates realizing
a specific the macrostate r is A*p(r), assuming the spatial resolution is of the order of the
segment length A. The corresponding microcanonical entropy is given by

3r?
2DN’

S ~ kg In[\p(r)] = Sy — k5 (2.22)
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Excursion PDF & thermodynamics

3r?
2DN

S ~ kB 111[)\3p(’l")] — S() — kB

To obtain a prediction for the mean force f required to stretch the polymer by a small
amount dr, we can exploit the general thermodynamic relation

dE = oW + 40, (2.23a)

where work and heat increments are defined as usual by
W =—f-dr, 0Q)Q =TdS, (2.23b)

with 7" denoting temperature. If one neglect self-avoidance interactions, which are present

in real polymers, the energy remains constant during a change of confirmation, dE = 0.
Hence,

ds = % . dr (2.24)

and the stretch force components are obtained as

fi=T <85> = —SkBTn;. (2.25)

@ri DN

— f is the force needed to stretch a polymer in a solvent bath of te_mperature T
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Excursion PDF & thermodynamics

3r?
2DN

S ~ kB 111[)\3p(’l")] — S() — kB

Furthermore, it is also instructive to compute the corresponding free-energy

3r?
F=FE-TS=FE-T T . 2.2
S So + kg DN (2.26)
This is essentially a thermodynamic version of Hooke’s law
K 3kgT
F=F+ —7r? K = . 2.2
0+ 9 o, DN ( 7)

For long stiff polymers we have DN ~ 2ANLp = 2LLp, we find for the spring-constant

 3kgT
- 2LLp

K (2.28)

This means, for example, that the persistence length L, can be inferred from force mea-
surements if temperature 7" and polymer length L are known.
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Self-avoidance (Flory’s scaling argument)

K 3epT
e[t g2 K —
ot 5T DN

e [IDEA: include additional free energy term to account for self repulsion
e ASSUMPTIONS:

(i) N > 1 monomers of volume vy with fixed end-to-end distance r

(ii) for a fixed ||, the N monomers may (very roughly) explore a volume of |r|¢,

(111) overlap probability given by volume filling fraction ¢ = vgN/|r|?

vaN ?}dN |’I"|2d
F o NEgT & — NkgT Y F—F 4 NkoT [ Y42
sl'o=Nksl o 0+ NFp (yr\d ToD,N?
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Self-avoidance (Flory’s scaling argument)

r

2

F=F,+ NksT | 2=
o+ B (\r|d+2DdN2

To obtain the equilibrium distance r,, we must minimize this expression with respect to
r = |r|, which gives

dF UdN d
0=———=—d . 2.31
d|r] a1 T DN (2:31)

and therefore
r. = (Dgvg) /2 N3/ (@+2), (2.32)
Thus, explicitly

d=1: r. X N (2.33a)
d=2: ry o N34, (2.33b)
d=3: ry oc N3/5. (2.33¢)

The result is trivial for d = 1, seems to be exact for d = 2 when compared to simulations,
and is very close to best numerical results N%*%- for d = 3.


mailto:dunkel@math.mit.edu

w72
Rouse model (wiki) ®W\e@, &

2.2 Bead-spring model Qe

single bead is governed by the over-damped Langevin equation & N=1 3
dX o(t) = =V U{X,}) dt + V2D x dB,(t), (2.34)

where D is the thermal diffusion constant of a bead. The potential U contains contributions
from elastic nearest neighbor interactions U,, from bending U, and, to implement self-
avoidance, steric short-range repulsion U:

U=U,+ U, + U, (2.35)

Defining (N — 1) chain link vectors R, and their orientations pu, by

R
R,=X.,.1—X,., K, = = (2.36)
| Ra|
the potentials can be written as sums over 2-body and 3-body interactions
N-1 N—-2 N N
Ue = D ull[Rall) Up = > bk tasr) U = > > slllXa— X5l
a=1 a=1 a=1 pg=1,0#«a

Specifically, the elastic spring potential u(r) and the steric repulsion potential s(r) en-
code 2-body interactions, whereas the bending potential b(q) involves 3-body interactions.?
Plausible choices are

e—r/a
W) =Sl NE L M) =1 s =2

2 2 rv

(2.38)
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2.2 Bead-spring model

o ©
single bead is governed by the over-damped Langevin equation @ N=
dX o (t) = =V, U{X.,}) dt + V2D x dB,(1), (2.34)

where D is the thermal diffusion constant of a bead. The potential U contains contributions
from elastic nearest neighbor interactions U,, from bending U, and, to implement self-
avoidance, steric short-range repulsion U:

U=U,+U,+ U, (2.35)

Needs to be solved numerically but stationary distribution known

pn({za}) = . exp (2.39)

4N

[_U({ga})lj

where

In :/ (ﬂl d%a> exp [—U({ga})]. (2.40)


mailto:dunkel@math.mit.edu

