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Isomorphic graphs

f(a) = 1 !

f(b) = 6!

f(c) = 8!

f(d) = 3!

f(g) = 5!

f(h) = 2!

f(i) = 4!

f(j) = 7
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Complete simple graphs on n vertices



Bi-partite graph



(a) (b) (c) (d)

Figure 1.2: Planar, non-planar and dual graphs. (a) Plane ‘butterfly’graph. (b, c) Non-
planar graphs. (d) The two red graphs are both dual to the blue graph but they are not
isomorphic. Image source: wiki.

Given a graph G, its line graph or derivative L[G] is a graph such that (i) each vertex
of L[G] represents an edge of G and (ii) two vertices of L[G] are adjacent if and only if
their corresponding edges share a common endpoint (‘are incident’) in G (Fig. ??). This
construction can be iterated to obtain higher-order line (or derivative) graphs.

1.3 Adjacency and incidence

Adjacency matrix Two vertices v1 and v2 of a graph are called adjacent, if they are
connected by an edge. The adjacency matrix A(G) = (Aij) is a |V |⇥ |V |-matrix that lists
all the connections in a graph. If the graph is simple, then A is symmetric and has only

(a) (b) (c) (d)

Figure 1.3: Construction of a line graph. These figures show a graph (a, with blue vertices)
and its line graph (d, with green vertices). Each vertex of the line graph is shown labeled
with the pair of endpoints of the corresponding edge in the original graph. For instance,
the green vertex on the right labeled 1,3 corresponds to the edge on the left between the
blue vertices 1 and 3. Green vertex 1,3 is adjacent to three other green vertices: 1,4 and 1,2
(corresponding to edges sharing the endpoint 1 in the blue graph) and 4,3 (corresponding
to an edge sharing the endpoint 3 in the blue graph). Image and text source: wiki.
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Algebraic characterization
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entries 0 or 1. For example, for the graph in Fig. 1.3a, we have

A =

0

BBBB@

0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 1 0

1

CCCCA
(1.1)

If the graph is simple, then the diagonal elements of A are zero.
The column (row) sum defines the degree (connectivity) of the vertex

deg (vi) =
X

j

Aij (1.2)

and the volume of the graph is given by

vol(G) =
X

V

deg (vi) =
X

ij

Aij (1.3)

The degree matrix D(G) is defined as the diagonal matrix

D(G) = diag
�
deg(v1), . . . , deg(v|V |)

�
(1.4)

For the graph in Fig. 1.3a, one has

D =

0

BBBB@

3 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 2

1

CCCCA
(1.5)

The degree distribution is an important characteristics of random graphs, and we will
return to this topic further below.

If the graph is directed, we may still define a signed adjacency matrix ~A with elements

~

Aij =

8
><

>:

�1, if edge goes from vi to vj

+1, if edge goes from vj to vi

0, otherwise

(1.6)

The characteristic polynomial of a graph is defined as the characteristic polynomial of
the adjacency matrix

p(G; x) = det(A� xI) (1.7)

For the graph in Fig. 1.3a, we find

p(G; x) = �x(4� 2x� 6x2 + x

4) (1.8)

Characteristic polynomials are not diagnostic for graph isomorphism, i.e., two noniso-
morphic graphs may share the same characteristic polynomial.
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Characteristic polynomial
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Adjacency matrix

Nauru graph “integer graph”
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!
Basic operations in a graph are:	

	1.	 Adding an edge	 
	2.	 Deleting an edge	 
	3.	 Answering the question “is there an edge between i and j”	 
	4.	 Finding the successors of a given vertex	 
	5.	 Finding (if exists) a path between two vertices 

Complexity



In case that we’re using adjacency matrix we have:	

	1.	 Adding an edge – O(1)	 
	2.	 Deleting an edge – O(1)	 
	3.	 Answering the question “is there an edge between i and j” – O(1)	 
	4. Finding the successors of a given vertex – O(n)	 
	5.	 Finding (if exists) a path between two vertices – O(n^2)	 

Complexity



While for an adjacency list we can have:	

	1.	 Adding an edge – O(log(n))	 
	2.	 Deleting an edge – O(log(n))	 
	3. Answering the question “is there an edge between i and j” – O(log(n))	 
	4.	 Finding the successors of a given vertex – O(k), where “k” is the   

length of the lists containing the successors of i	
	5.	 Finding (if exists) a path between two vertices – O(n+m)  with m <= n 

Complexity

List
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Degree matrix



Incidence matrix The incidence matrix C of graph G is a|V |⇥ |E|-matrix with Cis = 1
if edge vi is contained in edge es, and Cis = 0 otherwise. For the graph in Fig. 1.3a, with
i = 1, . . . , 5 vertices and s = 1, . . . , 6 edges, we have

C =

0

BBBB@

1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 1

1

CCCCA
(1.9)

The incidence matrix C(G) of a graph G and the adjacency matrix A(L[G]) of its line
graph L[G] are related by

A(L[G]) = C(G)> ·C(G)� 2I , A(L[G])rs = CirCis � 2�rs (1.10)

For the example in Fig. 1.3, we thus find

A(L[G]) =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 1 1
1 0 0 0 0 1
0 1 1 0 0 1
0 0 1 1 1 0

1

CCCCCCA
(1.11)

yielding the characteristic polynomial

p(L[G]; x) = (x+ 2)
�
x

2 + x� 1
�
[(x� 3)x2 � x+ 2] (1.12)

Directed incidence matrix In addition to the undirected incidence matrix C, we still
define a directed |V |⇥ |E|-matrix ~C as follows

~

Cis =

8
><

>:

�1, if edge es departs from vi

+1, if edge es arrives at vi
0, otherwise

(1.13)

For undirected graphs, the assignment of the edge direction is arbitrary – we merely have
to ensure that the columns s = 1, . . . , |E| of ~C sum to 0. For the graph in Fig. 1.3a, one
finds

~C =

0

BBBB@

�1 �1 �1 0 0 0
1 0 0 �1 0 0
0 1 0 0 �1 0
0 0 1 0 1 �1
0 0 0 1 0 1

1

CCCCA
(1.14)
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1.3.1 Laplacian

The |V | ⇥ |V |-Laplacian matrix L(G) of a graph G, often also referred to as Kirchho↵
matrix, is defined as the di↵erence between degree matrix and adjacency matrix

L = D �A (1.15a)

Hence

Lij =

8
><

>:

deg(vi), if i = j

�1, if vi and vj are connected by edge

0, otherwise

(1.15b)

As we shall see below, this matrix provides an important characterization of the underlying
graph.

The |V |⇥ |V |-Laplacian matrix can also be expressed in terms of the directed incidence
matrix ~C, as

L = ~C · ~C
>

, Lij = ~

Cir
~

Cjr (1.16)

For the graph in Fig. 1.3a, one finds

L =

0

BBBB@

3 �1 �1 �1 0
�1 2 0 0 �1
�1 0 2 �1 0
�1 0 �1 3 �1
0 �1 0 �1 2

1

CCCCA
(1.17)

Properties We denote the eigenvalues of L by

�0  �1  . . .  �|V | (1.18)

The following properties hold:

(i) L is symmetric.

(ii) L is positive-semidefinite, that is �i � 0 for all i.

(iii) Every row sum and column sum of L is zero.2

(iv) �0 = 0 as the vector v0 = (1, 1, . . . , 1) satisfies L · v0 = 0.

(v) The multiplicity of the eigenvalue 0 of the Laplacian equals the number of connected
components in the graph.

(vi) The smallest non-zero eigenvalue of L is called the spectral gap.

(vii) For a graph with multiple connected components, L can written as a block diagonal
matrix, where each block is the respective Laplacian matrix for each component.

2
The degree of the vertex is summed with a -1 for each neighbor
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Normalized Laplacian The associated normalized Laplacian L(G) is defined as

L = D�1/2 ·L ·D�1/2 = I �D�1/2 ·A ·D�1/2 (1.19a)

with elements

Lij =

8
><

>:

1, if i = j and deg(vi) 6= 0

�1/
p
deg(vi) deg(vj), if i 6= j and vi and vj are connected by edge

0, otherwise

(1.19b)

One can write L(G) as, cf. Eq. (1.16),

L(G) = ~B · ~B
>

(1.20a)

where ~B is an |V |⇥ |E|-matrix where

~

Bis =

8
><

>:

�1/
p
deg(vi), if edge es departs from vi

+1/
p
deg(vi), if edge es arrives at vi

0, otherwise

(1.20b)

A ‘0-chain’ is a real-valued vertex function g : V ! R, and a ‘1-chain’ is a real-valued
edge function E ! R. Then ~B = ( ~Bis) can be viewed as boundary operator that maps

1-chains onto 0-chains, while the transposed matrix ~B
>
= ( ~Bsi) is a co-boundary operator

that maps 0-chains onto 1-chains. Accordingly L can be viewed as an operator that maps
vertex functions g, which can be viewed as |V |-dimensional column vector, onto another
vertex function L · g, such that

(L · g)(vi) =
1p

deg(vi)

X

vj⇠vi

"
g(vi)p
deg(vi)

� g(vj)p
deg(vj)

#
(1.21)

where vj ⇠ vi denotes the set of adjacent nodes.

8



Normalized Laplacian The associated normalized Laplacian L(G) is defined as

L = D�1/2 ·L ·D�1/2 = I �D�1/2 ·A ·D�1/2 (1.19a)

with elements

Lij =

8
><

>:

1, if i = j and deg(vi) 6= 0

�1/
p
deg(vi) deg(vj), if i 6= j and vi and vj are connected by edge

0, otherwise

(1.19b)

One can write L(G) as, cf. Eq. (1.16),

L(G) = ~B · ~B
>

(1.20a)

where ~B is an |V |⇥ |E|-matrix where

~

Bis =

8
><

>:

�1/
p
deg(vi), if edge es departs from vi

+1/
p
deg(vi), if edge es arrives at vi

0, otherwise

(1.20b)

A ‘0-chain’ is a real-valued vertex function g : V ! R, and a ‘1-chain’ is a real-valued
edge function E ! R. Then ~B = ( ~Bis) can be viewed as boundary operator that maps

1-chains onto 0-chains, while the transposed matrix ~B
>
= ( ~Bsi) is a co-boundary operator

that maps 0-chains onto 1-chains. Accordingly L can be viewed as an operator that maps
vertex functions g, which can be viewed as |V |-dimensional column vector, onto another
vertex function L · g, such that

(L · g)(vi) =
1p

deg(vi)

X

vj⇠vi

"
g(vi)p
deg(vi)

� g(vj)p
deg(vj)

#
(1.21)

where vj ⇠ vi denotes the set of adjacent nodes.

8

1, or �1. Therefore, it should not be surprising that we can extend
the notion of boundary to act also on k-chains, simply by linearity:

@
X

k

c
k

�
k

=
X

k

c
k

@�
k

.

That is, from one set of values assigned to all simplices of a com-

Figure 6: (a) An example of 1-chain being the boundary of a face (2-
simplex); (b) a second example of 1-chain with 4 non-zero coefficients.

plex, one can deduce another set of values derived by weighting the
boundaries of each simplex by the original value stored on it. This
operation is very natural, and can thus be implemented easily as
explained next.

3.2.4 Implementation of the Boundary Operator

Since the boundary operator is a linear mapping from the space of
k-simplices to the space of (k-1)-simplices, it can simply be rep-
resented by a matrix of dimension |Kk�1| ⇥ |Kk|. The reader can
convince herself that this matrix is sparse, as only immediate neigh-
bors are involved in the boundary operator. Similarly, this matrix
contains only the values 0, 1, and �1. Notice than in 3D, there are
three non-trivial boundary operators @

k

(@1 is the boundary oper-
ator on edges, @2 on triangles, @3 on tets). However, the operator
needed for a particular operation is obvious from the type of the
argument: if the boundary of a tet is needed, the operator @3 is
the only one that makes sense to apply; in other words, the bound-
ary of a k-simplex �

k

is found by invoking @
k

�
k

. Thanks to this
context-dependence, we can simplify the notation and remove the
superscript when there is no ambiguity.

3.3 Notion of Cochains
A k-cochain ! is the dual of a k-chain, that is to say, ! is a linear
mapping that takes k-chains to R. One writes:

! : C
k

! R
c ! !(c), (4)

which reads as: a k-cochain ! operates on a k-chain c to give a
scalar in R. Since a chain is a linear combination of simplices, a
cochain returns a linear combination of the values of that cochain
on each simplex involved.
Clearly, a co-chain also corresponds to one value per simplex (since
all the k-simplices form a basis for the vector space C

k

, and we
only need to know the mapping of vectors in this basis to determine
a linear mapping), and hence the notion of duality of chains and
co-chains is appropriate. But contrary to a chain, a k-cochain is
evaluated on each simplex of the dimension k. In other words, a
k-cochain can be thought of as a field that can be evaluated on each
k-simplex of an oriented simplicial complex K.

3.3.1 Implementation of Cochains

The numerical representation of cochains follows from that of
chains by duality. Recall that a k-chain can be represented as a
vector c

k

of length equal to the number of k-simplices inM. Sim-
ilarly, one may represent ! by a vector !k of the same size as c

k

.

Now, remember that ! operates on c to give a scalar in R. The
linear operation !(c) translates into an inner product !k · c

k

. More
specifically, one may continue to think of c

k

as a column vector so
that the R-valued linear mapping ! can be represented by a row
vector (!k)t, and !(c) becomes simply the matrix multiplication
of the row vector (!k)t with the column vector c

k

. The evaluation
of a cochain is therefore trivial to implement.

3.4 Discrete Forms as Co-Chains
The attentive reader will have noticed by now: k-cochains are dis-
crete analogs to differential forms. Indeed, a continuous k-form
was defined as a linear mapping from k-dimensional sets to R, as
we can only integrate a k-form on a k-(sub)manifold. Note now
that a kD set, when one has only a mesh to work with, is simply
a chain. And a linear mapping from a chain to a real number is
what we called a cochain: a cochain is therefore a natural discrete
counterpart of a form.
For instance a 0-form can be evaluated at each point, a 1-form can
be evaluated on each curve, a 2-form can be evaluated on each sur-
face, etc. Now if we restrict integration to take place only on the
k-submanifold which is the sum of the k-simplices in the triangu-
lation, we get a k-cochain; thus k-cochains are a discretization of
k-forms. One can further map a continuous k-form to a k-cochain.
To do this, first integrate the k-form on each k-simplex and assign
the resulting value to that simplex to obtain a k-cochain on the k-
simplicial complex. This k-cochain is a discrete representation of
the original k-form.

3.4.1 Evaluation of a Form on a Chain

We can now naturally extend the notion of evaluation of a differen-
tial form ! on an arbitrary chain simply by linearity:

Z
P
i

c
i

�
i

! =
X

i

c
i

Z

�i

!. (5)

As mentioned above, the integration of ! on each k-simplex �
k

provides a discretization of ! or, in other words, a mapping from
the k-form ! to a k-cochain represented by:

![i] =

Z

�i

!.

However convenient this chain/cochain standpoint is, in practical
applications, one often needs a point-wise value for a k-form or to
evaluate the integration on a particular k-submanifold. How do we
get these values from a k-cochain? We will cover this issue of form
interpolation in Section 6.

4 Operations on Chains and Cochains
4.1 Discrete Exterior Derivative
In the present discrete setting where the discrete differential forms
are defined as cochains, defining a discrete exterior derivative can
be done very elegantly: Stokes’ theorem, mentioned early on in
Section 2, can be used to define the exterior derivative d. Tra-
ditionally, this theorem states a vector identity equivalent to the
well-known curl, divergence, Green’s, and Ostrogradsky’s theo-
rems. Written in terms of forms, the identity becomes quite sim-
ple: it states that d applied to an arbitrary form ! is evaluated on an
arbitrary simplex � as follows:

Z

�

d! =

Z

@�

!. (6)
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where vj ⇠ vi denotes the set of adjacent nodes.
We denote the eigenvalues of L by

0 = �
0

 �
1

 . . .  �|V |�1

(6.22)

Abbreviating n = |V |, one can show that

(i)
P

i �i  n with equality i↵ G has no isolated vertices.

(ii) �
1

 n/(n� 1) with equality i↵ G is the complete graph on n � 2 vertices.

(iii) If n � 2 and G has no isolated vertices, then �n�1

� n/(n� 1).

(iv) If G is not complete, then �
1

 1.

(v) If G is connected, then �
1

> 0.

(vi) If �i = 0 and �i+1

> 0, then G has exactly i+ 1 connected components.

(vii) For all i  n � 1, we have �i  2, with �n�1

= 2 i↵ a connected component of G is
bipartite and nontrivial.

(viii) The spectrum of a graph is the union of the spectra of its connected components.

See Chapter 1 in [Chu97] for proofs.

Examples:

• For a complete graph Kn on n � 2 vertices, the eigenvalues are 0 (multiplicity 1) and
n/(n� 1) (multiplicity n� 1)

• For a complete bipartite graph Km,n on m + n vertices, the eigenvalues are 0 and 1
(multiplicity m+ n� 2) and 2.

• For the star Sn on n � 2 vertices, the eigenvalues are 0 and 1 (multiplicity n � 2)
and 2.

• For the path Pn on n � 2 vertices, the eigenvalues are �k = 1 � cos[⇡k/(n � 1)] for
k = 0, . . . , n� 1.

• For the cycle Cn on n � 2 vertices, the eigenvalues are �k = 1 � cos[2⇡k/n] for
k = 0, . . . , n� 1.

• For the n-cube Qn on 2n vertices, the eigenvalues are �k = 2k/n, with multiplicity
✓

n
k

◆

for k = 0, . . . , n.
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Graph Laplacian

degree matrix

adjacency matrix

Laplacian matrix

1.3.1 Laplacian

The |V | ⇥ |V |-Laplacian matrix L(G) of a graph G, often also referred to as Kirchho↵
matrix, is defined as the di↵erence between degree matrix and adjacency matrix

L = D �A (1.15a)

Hence

Lij =

8
><

>:

deg(vi), if i = j

�1, if vi and vj are connected by edge

0, otherwise

(1.15b)

As we shall see below, this matrix provides an important characterization of the underlying
graph.

The |V |⇥ |V |-Laplacian matrix can also be expressed in terms of the directed incidence
matrix ~C, as

L = ~C · ~C
>

, Lij = ~

Cir
~

Cjr (1.16)

For the graph in Fig. 1.3a, one finds

L =

0

BBBB@

3 �1 �1 �1 0
�1 2 0 0 �1
�1 0 2 �1 0
�1 0 �1 3 �1
0 �1 0 �1 2

1

CCCCA
(1.17)

Properties We denote the eigenvalues of L by

�0  �1  . . .  �|V | (1.18)

The following properties hold:

(i) L is symmetric.

(ii) L is positive-semidefinite, that is �i � 0 for all i.

(iii) Every row sum and column sum of L is zero.2

(iv) �0 = 0 as the vector v0 = (1, 1, . . . , 1) satisfies L · v0 = 0.

(v) The multiplicity of the eigenvalue 0 of the Laplacian equals the number of connected
components in the graph.

(vi) The smallest non-zero eigenvalue of L is called the spectral gap.

(vii) For a graph with multiple connected components, L can written as a block diagonal
matrix, where each block is the respective Laplacian matrix for each component.

2
The degree of the vertex is summed with a -1 for each neighbor
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Line graphs of undirected graphs

1. draw vertex for each edge in G 
2. connect vertices if edges have joint point

(a) (b) (c) (d)

Figure 1.2: Planar, non-planar and dual graphs. (a) Plane ‘butterfly’graph. (b, c) Non-
planar graphs. (d) The two red graphs are both dual to the blue graph but they are not
isomorphic. Image source: wiki.

Given a graph G, its line graph or derivative L[G] is a graph such that (i) each vertex
of L[G] represents an edge of G and (ii) two vertices of L[G] are adjacent if and only if
their corresponding edges share a common endpoint (‘are incident’) in G (Fig. ??). This
construction can be iterated to obtain higher-order line (or derivative) graphs.

1.3 Adjacency and incidence

Adjacency matrix Two vertices v1 and v2 of a graph are called adjacent, if they are
connected by an edge. The adjacency matrix A(G) = (Aij) is a |V |⇥ |V |-matrix that lists
all the connections in a graph. If the graph is simple, then A is symmetric and has only

(a) (b) (c) (d)

Figure 1.3: Construction of a line graph. These figures show a graph (a, with blue vertices)
and its line graph (d, with green vertices). Each vertex of the line graph is shown labeled
with the pair of endpoints of the corresponding edge in the original graph. For instance,
the green vertex on the right labeled 1,3 corresponds to the edge on the left between the
blue vertices 1 and 3. Green vertex 1,3 is adjacent to three other green vertices: 1,4 and 1,2
(corresponding to edges sharing the endpoint 1 in the blue graph) and 4,3 (corresponding
to an edge sharing the endpoint 3 in the blue graph). Image and text source: wiki.
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Line graphs of directed graphs



Incidence matrix The incidence matrix C of graph G is a|V |⇥ |E|-matrix with Cis = 1
if edge vi is contained in edge es, and Cis = 0 otherwise. For the graph in Fig. 1.3a, with
i = 1, . . . , 5 vertices and s = 1, . . . , 6 edges, we have

C =

0

BBBB@

1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 1

1

CCCCA
(1.9)

The incidence matrix C(G) of a graph G and the adjacency matrix A(L[G]) of its line
graph L[G] are related by

A(L[G]) = C(G)> ·C(G)� 2I , A(L[G])rs = CirCis � 2�rs (1.10)

For the example in Fig. 1.3, we thus find

A(L[G]) =

0

BBBBBB@

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 1 1
1 0 0 0 0 1
0 1 1 0 0 1
0 0 1 1 1 0

1

CCCCCCA
(1.11)

yielding the characteristic polynomial

p(L[G]; x) = (x+ 2)
�
x

2 + x� 1
�
[(x� 3)x2 � x+ 2] (1.12)

Directed incidence matrix In addition to the undirected incidence matrix C, we still
define a directed |V |⇥ |E|-matrix ~C as follows

~

Cis =

8
><

>:

�1, if edge es departs from vi

+1, if edge es arrives at vi
0, otherwise

(1.13)

For undirected graphs, the assignment of the edge direction is arbitrary – we merely have
to ensure that the columns s = 1, . . . , |E| of ~C sum to 0. For the graph in Fig. 1.3a, one
finds

~C =

0

BBBB@

�1 �1 �1 0 0 0
1 0 0 �1 0 0
0 1 0 0 �1 0
0 0 1 0 1 �1
0 0 0 1 0 1

1

CCCCA
(1.14)
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(a) (b) (c) (d)

Figure 1.2: Planar, non-planar and dual graphs. (a) Plane ‘butterfly’graph. (b, c) Non-
planar graphs. (d) The two red graphs are both dual to the blue graph but they are not
isomorphic. Image source: wiki.

Given a graph G, its line graph or derivative L[G] is a graph such that (i) each vertex
of L[G] represents an edge of G and (ii) two vertices of L[G] are adjacent if and only if
their corresponding edges share a common endpoint (‘are incident’) in G (Fig. ??). This
construction can be iterated to obtain higher-order line (or derivative) graphs.

1.3 Adjacency and incidence

Adjacency matrix Two vertices v1 and v2 of a graph are called adjacent, if they are
connected by an edge. The adjacency matrix A(G) = (Aij) is a |V |⇥ |V |-matrix that lists
all the connections in a graph. If the graph is simple, then A is symmetric and has only

(a) (b) (c) (d)

Figure 1.3: Construction of a line graph. These figures show a graph (a, with blue vertices)
and its line graph (d, with green vertices). Each vertex of the line graph is shown labeled
with the pair of endpoints of the corresponding edge in the original graph. For instance,
the green vertex on the right labeled 1,3 corresponds to the edge on the left between the
blue vertices 1 and 3. Green vertex 1,3 is adjacent to three other green vertices: 1,4 and 1,2
(corresponding to edges sharing the endpoint 1 in the blue graph) and 4,3 (corresponding
to an edge sharing the endpoint 3 in the blue graph). Image and text source: wiki.
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Isomorphic graphs

f(a) = 1 !

f(b) = 6!

f(c) = 8!

f(d) = 3!

f(g) = 5!

f(h) = 2!

f(i) = 4!

image source: wiki

Whitney graph isomorphism theorem: Two connected graphs are isomorphic if and only if their !
line graphs are isomorphic, with a single exception: K3, the complete graph on three vertices, and the !
complete bipartite graph K1,3, which are not isomorphic but both have K3 as their line graph.

Whitney, Hassler (January 1932). "Congruent Graphs and the Connectivity of Graphs". Amer. J. Mathematics (The Johns Hopkins University Press) 54 (1): 150–168

http://en.wikipedia.org/wiki/Line_graph
http://en.wikipedia.org/wiki/Complete_graph
http://en.wikipedia.org/wiki/Complete_bipartite_graph
http://www.jstor.org/stable/2371086


Line graphs of line graphs of ….

van Rooij & Wilf (1965):!
When G is a finite connected graph, only four possible behaviors are 
possible for this sequence:!
! •! If G is a cycle graph then L(G) and each subsequent graph in this    

sequence is isomorphic to G itself. These are the only connected 
graphs for which L(G) is isomorphic to G.!

! •! If G is a claw K1,3, then L(G) and all subsequent graphs in the    
sequence are triangles.!

! •! If G is a path graph then each subsequent graph in the sequence is    
a shorter path until eventually the sequence terminates with an 
empty graph.!

! •! In all remaining cases, the sizes of the graphs in this sequence    
eventually increase without bound.!

!
If G is not connected, this classification applies separately to each 
component of G.

http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Cycle_graph
http://en.wikipedia.org/wiki/Graph_isomorphism
http://en.wikipedia.org/wiki/Path_graph
http://en.wikipedia.org/wiki/Empty_graph


smallest number of colors needed to color the vertices of  so that  

no two adjacent vertices share the same color

Chromatic number

NP complete problem: NP (verifiable in nondeterministic polynomial time) and NP-hard (any NP-problem can be translated into this problem)

http://mathworld.wolfram.com/NP-Problem.html
http://mathworld.wolfram.com/PolynomialTime.html
http://mathworld.wolfram.com/NP-HardProblem.html
http://mathworld.wolfram.com/NP-Problem.html


Small-world networks

mean distance  between nodes scales as

• Milgram experiment (1967, 1969) 
• 96 packages from Mass to Omaha 

• target received 18 packages 

• average path length 5.9  … “6 degrees of separation” 
!

• Erdős number graphs 
!

• Bacon number 
!

• certain protein networks



(a) Ring network:  each node is connected to the same number  l=3 nearest neighbors on each side!
!
(b) Watts-Strogatz network created by removing each edge with uniform, independent probability p 
and rewiring it to yield an edge between a pair of nodes that are chosen uniformly at random 
(avoiding looping and node-replication). !
!
(c) Newman-Watts variant of a Watts-Strogatz network, in which one adds "shortcut" edges between 
pairs of nodes in the same way as in a WS network but without removing edges from the underlying 
lattice. !!
Copyright © 2003 Society for Industrial and Applied Mathematics.

D. J. Watts, S. H. Strogatz. Collective dynamics of small-world networks. Nature 393(1), 440–442 (1998)

Watts-Strogatz model



Scale-free networks

degree distribution
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