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Complete simple graphs on n vertices
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Bi-partite graph
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Planar, non-planar & dual graphs
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Figure 1.2: Planar, non-planar and dual graphs. (a) Plane ‘butterfly’graph. (b, ¢) Non-
planar graphs. (d) The two red graphs are both dual to the blue graph but they are not
isomorphic. Image source: wiki.



Algebraic characterization



Undirected Graph & Adjacency Matrix

Undirected Graph Adjacency Matrix

| VIX| V] matrix
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Characteristic polynomial

01110
(10001\
A=|10010 (1.1)
10101
\0 101 0

If the graph is simple, then the diagonal elements of A are zero.

The characteristic polynomial of a graph is defined as the characteristic polynomial of
the adjacency matrix

p(G;x) = det(A — xT) (1.7)
For the graph in Fig. 1.3a, we find
p(G;7) = —2(4 — 2 — 62° + 2*) (1.8)

Characteristic polynomials are not diagnostic for graph isomorphism, i.e., two noniso-
morphic graphs may share the same characteristic polynomial.



Adjacency matrix
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Directed Graph & Adjacency Matrix

Undirected Graph
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Directed Graph & Adjacency List

Undirected Graph Adjacency List
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Complexity

Basic operations in a graph are:

1. Adding an edge

2. Deleting an edge

3. Answering the question “is there an edge between 1 and j”
4. Finding the successors of a given vertex

5. Finding (if exists) a path between two vertices



Undirected Graph & Adjacency Matrix

OO0 6606

@oy1|1]0]0]oO

n @1|ofo|1fo0]o0O
Complexity o L[ Tel:
@of1[1]of1]o0

®ojofo|1]of1

®@oloJojof1]o

Undirected Graph Adjacency Matrix

In case that we’re using adjacency matrix we have:

1. Adding an edge — O(1)

2. Deleting an edge — O(1)

3. Answering the question “1s there an edge between 1 and ;7 — O(1)
4. Finding the successors of a given vertex — O(n)

5. Finding (if exists) a path between two vertices — O(n”2)




Complexity

While for an adjacency list we can have:

1. Adding an edge — O(log(n))
2. Deleting an edge — O(log(n))

Directed Graph & Adjacency List

Undirected Graph

Adjacency List

3. Answering the question “is there an edge between 1 and 77 — O(log(n))

4. Finding the successors of a given vertex — O(k), where “k” 1s the
length of the lists containing the successors of 1

5. Finding (if exists) a path between two vertices — O(n+m) with m <=n



Weighted Directed Graph & Adjacency Matrix
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Degree matrix
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If the graph is simple, then the diagonal elements of A are zero.
The column (row) sum defines the degree (connectivity) of the vertex

deg (v;) = Z Aij
J
and the volume of the graph is given by
vol(§) =) deg(v;) = > Ay
1% ij

The degree matrix D(9) is defined as the diagonal matrix
D(S) = diag (deg(v1), ..., deg(vjv)))

For the graph in Fig. 1.3a, one has

30000
(02000\
D=]|0020 0
000 30
\0 000 2

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)



Directed incidence matrix In addition to the undirected incidence matrix C, we still
define a directed |V| x |F|-matrix C' as follows

( —1, if edge e, departs from v;

Cis = < +1, if edge e, arrives at v; (1.13)

L0, otherwise

For undirected graphs, the assignment of the edge direction is arbitrary — we merely have

to ensure that the columns s = 1,...,|F| of C sum to 0. For the graph in Fig. 1.3a, one
finds
(—1 -1 -1 .0 0 0)
1 0 0 -1 0 O
cC=10 1 0 0 -1 0 (1.14)
o o0 1 0 1 -1
\0 0 0 1 0 1)




1.3.1 Laplacian

The |V| x |V|-Laplacian matrix L(G) of a graph G, often also referred to as Kirchhoff
matrix, is defined as the difference between degree matrix and adjacency matrix

L=D-A (1.15a)
Hence
(deg(v;), ifi=j
Lij = § —1, if v; and v; are connected by edge (1.15b)

L0, otherwise

As we shall see below, this matrix provides an important characterization of the underlying
graph.
The |V| x |V|-Laplacian matrix can also be expressed in terms of the directed incidence

matrix C, as

“1 -1 -1 0 0 0) 3. -1 -1 =1 0

1 0 0 -1 0 0 -2 0 0 -1
cC=l0 1 0 0 -1 0 L=|-1 0 2 -1 0
o o0 1 0 1 -1 -1 0 -1 3 -1

\0 0 0 1 0 1) \o —1 0 -1 2




Normalized Laplacian The associated normalized Laplacian L(G) is defined as

L=D'.L.D'V?*=1—-D'?*. A.D/? (1.19a)
with elements
(1, if i = j and deg(v;) # 0
Lij = < —1/+/deg(v;) deg(v;), if i # j and v; and v; are connected by edge (1.19b)
L0, otherwise

One can write L(G) as, cf. Eq. (1.16),
L(S)=B-B (1.20a)
where B is an |V| x |E|-matrix where

(—1/+/deg(v;), if edge e, departs from v;
+1/+/deg(v;), if edge e; arrives at v; (1.20Db)

0, otherwise
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A ‘0O-chain’ is a real-valued vertex function g : V — R, and a ‘l-chain’ is a real-valued
edge function E — R. Then B = (st) can be viewed as boundary operator that maps

1-chains onto O-chains, while the transposed matrix ET = (Bzz) 1s a co-boundary operator
that maps 0-chains onto 1-chains. Accordingly L can be viewed as an operator that maps
vertex functions g, which can be viewed as |V |-dimensional column vector, onto another
vertex function L - g, such that

- " 9(%‘)
To9)0) = s S Py W Jdea(c) (1-21)

where v; ~ v; denotes the set of adjacent nodes.



We denote the eigenvalues of L by
0=MX <A <...< Ay (6.22)

Abbreviating n = |V/|, one can show that
(i) 3. M < n with equality iff § has no isolated vertices.

(i) A; < n/(n — 1) with equality iff G is the complete graph on n > 2 vertices.

(iii) If n > 2 and G has no isolated vertices, then \,_; > n/(n — 1).

If G is connected, then \; > 0.

(v

(vi

)
)
)
(iv) If G is not complete, then \; < 1.
)
) If A = 0 and \;4q > 0, then G has exactly ¢ + 1 connected components.
)

For all i < n — 1, we have \; < 2, with \,,_; = 2 iff a connected component of G is
bipartite and nontrivial.

(vii

(viii) The spectrum of a graph is the union of the spectra of its connected components.

See Chapter 1 in [Chu97| for proofs.



Examples:

For a complete graph K, on n > 2 vertices, the eigenvalues are 0 (multiplicity 1) and
n/(n — 1) (multiplicity n — 1)

For a complete bipartite graph K,,, on m + n vertices, the eigenvalues are 0 and 1
(multiplicity m +n — 2) and 2.

For the star S, on n > 2 vertices, the eigenvalues are 0 and 1 (multiplicity n — 2)
and 2.

For the path P, on n > 2 vertices, the eigenvalues are A\, = 1 — cos[rk/(n — 1)] for
k=0,...,n—1.

For the cycle C,, on n > 2 vertices, the eigenvalues are \, = 1 — cos[2wk/n] for
k=0,...,n—1.

For the n-cube Q,, on 2" vertices, the eigenvalues are A\, = 2k/n, with multiplicity

n
(k) for k=0,...,n.

@ ¥ O




Graph Laplacian

degree matrix

(200000\
03 0000
002 000
000 300

000030
\0 0000 1)

if v; and v; are connected by edge

if i =7
otherwise

ng(?ﬁ),
Lij — —1,
0,

adjacency matrix

(010010\
1 01010
010100
001011

1 10100

\0 0010 0)

Laplacian matrix
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Properties We denote the eigenvalues of L by
Ao <A <L < Ay (1.18)
The following properties hold:
(i
(ii

) L is symmetric.
) L

(iii) Every row sum and column sum of L is zero.
)
)

is positive-semidefinite, that is A\; > 0 for all .
(iv) Ao = 0 as the vector vg = (1,1,...,1) satisfies L - vy = 0.

The multiplicity of the eigenvalue 0 of the Laplacian equals the number of connected
components in the graph.

(v

(vi) The smallest non-zero eigenvalue of L is called the spectral gap.

(vii) For a graph with multiple connected components, L can written as a block diagonal
matrix, where each block is the respective Laplacian matrix for each component.

2The degree of the vertex is summed with a -1 for each neighbor



Line graphs of undirected graphs

1. draw vertex for each edge in G
2. connect vertices if edges have joint point




Line graphs of directed graphs



Incidence matrix The incidence matrix C of graph G is a|V| x | E|-matrix with C;s = 1
if edge v; is contained in edge es, and C;; = 0 otherwise. For the graph in Fig. 1.3a, with
1 =1,...,5 vertices and s = 1,...,6 edges, we have

)

(1 X

1
c=10 0 (1.9)
1

X y

The incidence matrix C(G) of a graph G and the adjacency matriz A(L|G]) of its line
graph L[G] are related by

OO = O =
SR OO
_ o O = O
O = = O O

ALIGh=C(9)'-C(G) -2 & A(L[G])rs = CirCis — 26,6 (1.10)

For the example in Fig. 1.3, we thus find

0O 1 1 1 00
1 01 010
1 100 11
0O 1 1 00 1
00111 0
'H'-"""f.,_p \
i / .
53 gt characteristic polynomial
[ _—

is p(L[G];x) = (x + 2) (:c2+x—1) (x — 3)z* — x + 2]



[somorphic graphs

image source: Wiki

CD‘ ,ED fla) = 1

flb) = 6

5 6 fic) = 8

f(d) = 3

8 7 fg) =5

flh) = 2

(4) © RPN

Whitney graph isomorphism theorem: Two connected graphs are isomorphic if and only if their
line graphs are isomorphic, with a single exception: Ks, the complete graph on three vertices, and the
complete bipartite graph Ki 3, which are not isomorphic but both have Ks as their line graph.

Whitney, Hassler (January 1932). "Congruent Graphs and the Connectivity of Graphs". Amer. J. Mathematics (The Johns Hopkins University Press) 54 (1): 150—168
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Line graphs of line graphs of ....

van Rooij & Wilf (1965):

When G is a finite connected graph, only four possible behaviors are
possible for this sequence:

- If Gis a cycle graph then L(G) and each subsequent graph in this
sequence is isomorphic to G itself. These are the only connected S
graphs for which L(G) is isomorphic to G. .

- If Gis aclaw Ki 3, then L(G) and all subsequent graphs in the
sequence are triangles.

- If Gis a path graph then each subsequent graph in the sequence is
a shorter path until eventually the sequence terminates with an
empty graph.

- In all remaining cases, the sizes of the graphs in this sequence
eventually increase without bound.

If G is not connected, this classification applies separately to each
component of G.
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Chromatic number

smallest number of colors needed to color the vertices of so that

no two adjacent vertices share the same color
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NP complete problem: NP (verifiable in nondeterministic polynomial time) and NP-hard (any NP-problem can be translated into this problem)


http://mathworld.wolfram.com/NP-Problem.html
http://mathworld.wolfram.com/PolynomialTime.html
http://mathworld.wolfram.com/NP-HardProblem.html
http://mathworld.wolfram.com/NP-Problem.html

Small-world networks

mean distance between nodes scales as D log ‘V| ‘V‘ — OO

 Milgram experiment (1967, 1969)

96 packages from Mass to Omaha
e target received 18 packages

e average path length 5.9 ... “6 degrees of separation”
 Erdos number graphs

e Bacon number

e certain protein networks




Watts-Strogatz model

D. J. Watts, S. H. Strogatz. Collective dynamics of small-world networks. Nature 393(1), 440—-442 (1998)

(a) AN (b) AN (c)

(a) Ring network: each node is connected to the same number /=3 nearest neighbors on each side

(b) Watts-Strogatz network created by removing each edge with uniform, independent probability p
and rewiring it to yield an edge between a pair of nodes that are chosen uniformly at random
(avoiding looping and node-replication).

(c) Newman-Watts variant of a Watts-Strogatz network, in which one adds "shortcut" edges between
pairs of nodes in the same way as in a WS network but without removing edges from the underlying
lattice.

Copyright © 2003 Society for Industrial and Applied Mathematics.



Scale-free networks

P(k) oc k™7

degree distribution
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RANDOM VERSUS SCALE-FREE NETWORKS

Random Network

RANDOM NETWORKS, which resemble the U.S. highway system
(simplified in left map), consist of nodes with randomly placed
connections. In such systems, a plot of the distribution of node
linkages will follow a bell-shaped curve (/eft graph), with most
nodes having approximately the same number of links.

In contrast, scale-free networks, which resemble the U.S.
airline system (simplified in right map), contain hubs (red)—

nodes with a very high number of links. In such networks, the
distribution of node linkages follows a power law (center graph)
in that most nodes have just a few connections and some have
a tremendous number of links. In that sense, the system has no
“scale.” The defining characteristic of such networks is that the
distribution of links, if plotted on a double-logarithmic scale
(right graph), results in a straight line.

Scale-Free Network

+— Typical node

Number of Nodes

Number of Links

Bell Curve Distribution of Node Linkages

Barabasi & Bonabeau

Power Law Distribution of Node Linkages

Number of Nodes
Number of Nodes
(log scale)

Number of Links Number of Links (log scale)




Examples of Scale-Free Networks

NETWORK

Cellular metabolism

Hollywood

Internet

Protein regulatory
network

Research collaborations
Sexual relationships

World Wide Web

NODES

Molecules involved in
burning food for energy

Actors

Routers

Proteins that help to
regulate a cell’s activities
Scientists

People

Web pages

LINKS

Participation in the same
biochemical reaction

Appearance in the same movie

Optical and other
physical connections

Interactions among
proteins

Co-authorship of papers
Sexual contact

URLs

Barabasi & Bonabeau



