Transport problems

18.5995 - L32

mailto:dunkel@math.mit.edu

Root systems

d

S o

J 77
)

oYY i
e e = ot
ST A T sl

Katifori lab, MPl Goettingen

Maze solving

after 8 hours

Nakagaki et al (2000) Nature dunkel@math.mit.edu

mailto:dunkel@math.mit.edu

Tree graphs

D, Xk %k

Spanning trees

Minimal spanning tree

Kirchhoff’s theorem

Number of spanning trees tHG) = —AMAg- - Auet .
" on

2 -1 -1 0] e o o o
7 - -1 3 -1 -1 > - ® o
-1 -1 3 -1
0 -1 -1 2| Yoo &a
® ® o ®
3 -1 —1]
L =] -1 3 —-11. o e o °®
ol -1 -1 2 * -9 O @9
® ® © ®
sufficient to consider since row and column sums det L y =&

of Laplacian are zero

Max-Flow Min-Cut

OJ 3/3 »(q
3/3 2/2
0/2 1/4
2/3 3/3
P 2/2 >

An example of a flow network with a maximum flow. The source is s, and the sink t.
The numbers denote flow and capacity.

Deterministic transport

Maximum Flow and Minimum Cut

Max flow and min cuft.
. Two very rich algorithmic problems.
. Cornerstone problems in combinatorial optimization.
. Beautiful mathematical duality.

Nontrivial applications / reductions.

. Network connectivity. . Network reliability.

» Bipartite matching. . Security of statistical data.
. Data mining. . Distributed computing.

» Open-pit mining. - Egalitarian stable matching.
- Airline scheduling. . Distributed computing.

. Image processing. . Many many more . . .

. Project selection.
. Basebadll elimination.

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Soviet Rail Network, 1955

- .-)
L Py
[, e,
I
: rEo
©oa, by -
o =
i gl 5
}, . T _ ST
[~
L W <l
L g |
R
.,
u . oy

B
- DLALR Rrmar

Source: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Minimum Cut Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
. Capacities on edges.
. Source node s, sink node t.

Min cut problem. Delete "best" set of edges to disconnect t from s.

/“\ ™

10 15 10
source = (g gi\ \g > €& sink
capacity = 4
\A@% \%/

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

10 15 15 10

15 6 15 10

Capacity = 30

4
5 —»Q3) 8 6 10 1)
4
SN @

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Cuts

A cut is a node partition (S, T) such that sisinSand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

15 10

10 ™)

15 10

Capacity = 62

>@

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Minimum Cut Problem

A cut is a node partition (S, T) such thatsisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

Min cut problem. Find an s-t cut of minimum capacity.

10 4 15 15 10
5 Q 8 >® 10 /@
. 5 4 N5 10

v Capacity = 28
\a 30 pactty

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Maximum Flow Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
Capacities on edges same input as min cut problem

. Source node s, sink node t.

Max flow problem. Assign flow to edges so as to:
. Equalize inflow and outflow at every intermediate vertex.
- Maximize flow sent from s to t.

capacity =» 15 4

source = (g 5 % 8 6) 10—(1) € sink
6

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Flows

A flow f is an assignment of weights to edges so that:
. Capacity: 0< f(e) <u(e).
. Flow conservation: flow leaving v = flow entering v.
1T

exceptatsort

0

/CT 9
. \ 5)
10 4 4 15 10
0 v 4 4

5 —(3) 8
\ ;)
capacity = 15 +0 6 10

flow = O \(6 0 \/ Value = 4
4

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Flows

A flow f is an assignment of weights to edges so that:
. Capacity: 0< f(e) <u(e).

. Flow conservation: flow leaving v = flow entering v.
)

exceptatsort

AN

GO O o
/;0)
(@)}

10 4 4 150 10

3 v 8 v 8

s 5 —(3) 8 6 10
\ 1 10

150
capacity = 15 +0 6 10

l = 11
Flow) 4 11) 4 Value = 24
4 30

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Maximum Flow Problem

Max flow problem: find flow that maximizes net flow into sink.

10 4 0 15 150 10

4 v 8 v 9

\ A I "

capacity = 15 40 6 10

| =
Flow 14 v 14 v Value = 28
4 30 >

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal to the amount reaching .

6
/® 9 ®
10 0 6
15

10 4 4 150 10

4 8 8

5 —»3) 8 0 10 ®
0 10

1

1’(5) 40 6 150 10

10 Value = 24
\‘@ 30 @

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching t.

10 1)

10
150 1o

Value = 24

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any s-t cut. Then, the
net flow sent across the cut is equal o the amount reaching .

4 4 15 0 10
|
4 8 8
5 —»?{1 8 ? 10
> 10 0 10
15 40 6 150 10

10 Value = 24
30

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Flows and Cuts

Observation 2. Let f be a flow, and let (S, T) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 = Flow value < 30

9 ®

10 15 15 10

15 6 15 10

4
5 —»(3) 8 © 10 ®
4
N ®

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be an s-t cut whose capacity
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity =28 = Flow value <28

Flow value = 28

10 40 15 15 0 10
4 8 9
S 15 4 10
5 40 6 150 10
15
30
—

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Max-Flow Min-Cut Theorem

Max-flow min-cut theorem. (Ford-Fulkerson, 1956): In any network,
the value of max flow equals capacity of min cut.

. Proof IOU: we find flow and cut such that Observation 3 applies.

Min cut capacity = 28 < Max flow value = 28

9
/'@ ’ "

10 40 15 150 10
4 8 9
5 \ 8 >(6) 10 —»
S 15 4 10
15 40 6 150 10
15
30 >
—

Source: Princeton University + COS 226 -+ Algorithms and Data Structures < Spring 2004

Random transport

Combinatorics,
RANDOM WALKS ON GRAPHS: A SURVEY Paul Erdds is Eighty (Volume 2)

Keszthely (Hungary), 1993, pp. 1-46.

L. LOVASZ
Let G = (V, E) be a connected graph with n nodes and m edges. Consider
a random walk on G: we start at a node vg; if at the t-th step we are at G

a node vy, we move neighbor of v; with probability 1/d(v¢). Clearly, the e
sequence of random nodes (vy : t = 0,1,...) is a Markov chain. The node
vo may be fixed, but may itself be drawn from some initial distribution F.
We denote by P; the distribution of vy:
Pt(l) = PI‘Ob(Ut = ’L) e

We denote by M = (p;;)i jev the matrix of transition probabilities of

this Markov chain. So / 200 000 \
o 03 0000
Pis = { é/d(Z)’ ftlijerewié (1.1) D_ 1 — vue 0 vu
; ' 000 300
: : : : 000O03°0
Let Ag be the adjacency matrix of G and let D denote the diagonal matrix \ 00000 1)
with (D);; = 1/d(7), then M = DAg. If G is d-regular, then M = (1/d)Ag.
The rule of the walk can be expressed by the simple equation
(010010 \
P =MTP, 1 01010
A _ 010100
(the distribution of the ¢-th point is viewed as a vector in RY), and hence B 001011
1 10100
P = (M")'Py. \ 000100

It follows that the probability pﬁj that, starting at ¢, we reach j in ¢ steps
is given by the ij-entry of the matrix M?.

M=DA

2. MAIN PARAMETERS

We now formally introduce the measures of a random walk that play the
most important role in the quantitative theory of random walks, already
mentioned in the introduction.

(a)

The access time or hitting time H;; is the expected number of steps
before node j is visited, starting from node i. The sum

k(i,) = H(i,j) + H(j,)

is called the commute time: this is the expected number of steps in a
random walk starting at ¢, before node j is visited and then node 7 is
reached again. There is also a way to express access times in terms of
commute times, due to Tetali [63]:

Hij) = 5 (myj) + 3 ww)l(u,) - m(u,z’n) e

This formula can be proved using either eigenvalues or the electrical
resistance formulas (sections 3 and 4).

The cover time (starting from a given distribution) is the expected
number of steps to reach every node. If no starting node (starting
distribution) is specified, we mean the worst case, i.e., the node from
which the cover time is maximum.

The mizing rate is a measure of how fast the random walk converges to
its limiting distribution. This can be defined as follows. If the graph is

non-bipartite, then pz(.;'.) — d;/(2m) as t — oo, and the mixing rate is

d: |1/t
(4 = lim sup max pl(-t.) — L
t—oo BJ | 7 2m

(For a bipartite graph with bipartition {Vj,V5}, the distribution of
v oscillates between “almost proportional to the degrees on V{’ and
“almost proportional to the degrees on V4'. The results for bipartit
graphs are similar, just a bit more complicated to state, so we ignor
this case.)

Combinatorics,
Paul Erdés is Eighty (Volume 2)
Keszthely (Hungary), 1993, pp. 1-46.

Example 2. As another example, let us determine the access times and
cover times for a complete graph on nodes {0,...,n—1}. Here of course we
may assume that we start from 0, and to find the access times, it suffices
to determine H(0,1). The probability that we first reach node 1 in the ¢-th

n—2
n—1

= /n=2\"" 1
H(0,1) = t —n—1.
on=3t(7=5) e

t=1

t—1
step is clearly (> ﬁ, and so the expected time this happens is

The cover time for the complete graph is a little more interesting, and
is closely related to the so-called Coupon Collector Problem (if you want to
collect each of n different coupons, and you get every day a random coupon
in the mail, how long do you have to wait?). Let 7; denote the first time
when ¢ vertices have been visited. So 1 =0 < =1< 13 < ... < Tp.
Now 7;4.1 — 7; is the number of steps while we wait for a new vertex to occur
— an event with probability (n —4)/(n — 1), independently of the previous

steps. Hence
n—1

E(ri-1—m) = —,

and so the cover time is

n—1

n—1
n—1
E(TH)ZZE(Ti—I—l_Ti):Z - ~ nlogn.
i=1

- n—1
1=1

Combinatorics,
Paul Erdés is Eighty (Volume 2)
Keszthely (Hungary), 1993, pp. 1-46.

